способ получения синтез-газа или обогащенной водородом газовой смеси из водно-спиртовых смесей

Классы МПК:C01B3/38 с использованием катализаторов
B01J23/40 металлов группы платины
B01J23/48 серебро или золото
B01J23/72 медь
Автор(ы):, , , , ,
Патентообладатель(и):Институт катализа им. Г.К. Борескова СО РАН
Приоритеты:
подача заявки:
2002-01-21
публикация патента:

Изобретение относится к каталитическому способу осуществления реакции паровой конверсии этанола с целью получения синтез-газа или обогащенной водородом газовой смеси, которая может использоваться в различных областях промышленности, в том числе в водородной энергетике, например, в качестве топлива для топливных элементов. Сущность изобретения: способ осуществляется в реакторе с двумя фиксированными слоями катализатора. В качестве катализатора первого слоя используют катализатор, содержащий в качестве активного компонента металл Iб группы Периодической системы (медь, серебро, золото) и/или благородный металл, выбранный из группы, состоящей из платины, палладия, рутения, родия, иридия, нанесенный на графитоподобный углеродный носитель, катализатор первого слоя содержит активный компонент в количестве не менее 0,05 мас. %. В качестве катализатора второго слоя используют катализатор, содержащий металл VIII группы Периодической системы, выбранный из группы, состоящей из никеля, платины, палладия, рутения, родия, иридия. В реакционную смесь, поступающую на второй слой катализатора, предварительно вводят кислород или двуокись углерода с концентрацией не выше 50 об.%. Изобретение позволяет повысить эффективность процесса паровой конверсии спирта путем расширения видов исходного сырья за счет использования водно-этанольных смесей, содержащих метанол, и предотвращения дезактивации катализаторов и образования побочных продуктов. 9 з.п. ф-лы, 8 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5

Формула изобретения

1. Способ получения синтез-газа или обогащенной водородом газовой смеси паровой конверсией спиртов в реакторе с двумя фиксированными слоями катализатора, в качестве катализатора первого слоя используют катализатор, содержащий в качестве активного компонента металл Iб группы Периодической системы и/или благородный металл, нанесенный на графитоподобный углеродный носитель, а в качестве катализатора второго слоя используют катализатор, содержащий металл VIII группы Периодической системы, отличающийся тем, что в реакционную смесь, поступающую на второй слой катализатора, предварительно вводят кислород или двуокись углерода с концентрацией не выше 50 об.%.

2. Способ по п.1, отличающийся тем, что катализатор первого слоя содержит металл, выбранный из группы, состоящей из меди, серебра, золота.

3. Способ по п.1, отличающийся тем, что катализатор первого слоя содержит металл, выбранный из группы, состоящей из платины, палладия, рутения, родия, иридия.

4. Способ по пп.1-3, отличающийся тем, что катализатор первого слоя содержит активный компонент в количестве не менее 0,05 мас.%.

5. Способ по п.1, отличающийся тем, что катализатор второго слоя содержит металл, выбранный из группы, состоящей из никеля, платины, палладия, рутения, родия, иридия.

6. Способ по пп.1-5, отличающийся тем, что в качестве спирта используют этанол или метанол-этанольную смесь.

7. Способ по любому из пп.1-6, отличающийся тем, что процесс в первом слое осуществляют при температуре не ниже 200oС.

8. Способ по любому из пп.1-7, отличающийся тем, что процесс во втором слое осуществляют при температуре не ниже 500oС.

9. Способ по любому из пп.1-8, отличающийся тем, что реакцию осуществляют при давлении не ниже 0,1 атм.

10. Способ по любому из пп.1-9, отличающийся тем, что спирт используют в виде водно-спиртовой смеси, имеющей концентрацию от 1 до 50 об.%.

Описание изобретения к патенту

Изобретение относится к каталитическому способу осуществления реакции паровой конверсии этанола с целью получения синтез-газа или обогащенной водородом газовой смеси, которая может использоваться в различных областях промышленности, в том числе в водородной энергетике, например, в качестве топлива для топливных элементов.

Известно, что этанол является широко доступным возобновляемым сырьем, промышленные технологии производства которого хорошо разработаны - это, например, биохимическая переработка сахарного тростника, зерновых культур или древесины. Получаемый при этом биоэтанол представляет собой водный раствор, содержащий около 12 мас.% этанола. Особенно привлекательными были бы процессы, позволяющие перерабатывать биоэтанол без дистилляции. Таким процессом является паровая конверсия этанола для получения синтез-газа или обогащенных водородом газовых смесей.

Известно, что возможность получения водорода паровой конверсией этанола подтверждена термодинамически (K. Vasudeva, N. Mitra, P. Umasankar, D. Dhiugra, Int. J. Hydrogen Energy, Steam reforming of ethanole for hydrogen production: thermodynamic analysis, 21 (1996) 113; I. Fishtik, A. Alexander, R. Datta, D. Geana, Int. J. Energy, A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions 25 (2000) 31), при этом основным водородсодержащим продуктом паровой конверсии этанола при умеренных температурах является метан, тогда как при высоких температурах и больших мольных отношениях вода/этанол образуется преимущественно водородсодержащая смесь.

Известен способ паровой конверсии этанола на кобальт-содержащих катализаторах с использованием оксидных и углеродных носителей (F. Haga, T. Nakajama, H. Miya, S. Mishima, Catal. Lett. Catalytic properties of supported cobalt catalysts for steam reforming of ethanol, 48 (1997) 223). Недостатком указанного способа является образование побочных продуктов, таких как метан, метанол, этилен, ацетальдегид, диэтиловый эфир. Хорошо известно также, что в присутствии этилена образование углерода на катализаторе значительно усиливается (J.R. Rosrup-Nielsen, Catalytic steam reforming, Catalysis Science and Technology, Eds. J. R. Anderson and M. Boudart, v.5, Ch.l, Springer-Verlag, Berlin, 1984).

Известен способ получения обогащенной водородом газовой смеси паровой конверсией этанола на промотированных калием Ni- и Си-содержащих катализаторах, нанесенных на Аl2О3 (F.J. Marino, E.G. Cerrela, S. Dunalde et al., J. Hydrogen Energy, Hydrogen from steam reforming of ethanol. Characterization and performance of copper-nickel supported catalysts, 23 (1998) 1095). Основными недостатками указанного способа проведения паровой конверсии этанола в обогащенную водородом смесь являются низкая конверсия этанола, образование побочных продуктов (таких, как метан, ацетальдегид, диэтиловый эфир). Недостатком также является необходимость усложнения каталитической системы (введение калийсодержащего промотора) для уменьшения образования побочных продуктов.

Кроме того, известен способ, согласно которому процесс получения водорода проводят в реакторе с двумя фиксированными слоями катализатора с использованием катализатора Cu/SiO2 в первой стадии (S. Freni, N. Mondello, S. Cavallaro, G. Cacciola, V.N. Parmon, V.A. Sobyanin, React. Kinet. Catal. Lett. , Hydrogen production by steam reforming of ethanol two step process, 71 (2000) 143). На этой стадии из этанола образуется ацетальдегид, паровая конверсия которого на второй стадии на катализаторе Ni/MgO приводит к образованию обогащенной по водороду газовой смеси. Недостатком этого способа является быстрая дезактивация катализатора Cu/SiO2.

Наиболее близким является способ (В.Д. Беляев, В.В. Гальвита. В.Н. Пармон, Г.Л. Семин, В.А. Собянин, П.Г. Цырульников. Катализатор и способ получения синтез-газа или обогащенной водородом газовой смеси из водно-спиртовых смесей, Патент РФ 2177366, 7 В 01 J 23/40, С 01 В 3/00, 27.12.2001) получения обогащенной водородом газовой смеси в реакторе с двумя фиксированными слоями катализатора, где в качестве катализатора первого слоя используют катализатор, содержащий в качестве активного компонента металл Iб группы Периодической системы (медь, серебро, золото) и/или благородный металл, выбранный из группы, состоящей из платины, палладия, рутения, родия, иридия, нанесенный на графитоподобный углеродный носитель, а в качестве катализатора второго слоя используют катализатор, содержащий металл VIII группы Периодической системы, выбранный из группы, состоящей из никеля, платины, палладия, рутения, родия, иридия, например, используют известные промышленные никельсодержащие катализаторы конверсии метана ГИАП-16 (Справочник азотчика // Под ред. Мельникова Е.Я. М.: Химия, 1986. 512 с.). Недостатками этого способа являются наличие побочного продукта (метана), а также достаточно высокое содержание в продуктах оксида углерода, который является ядом для низкотемпературных топливных элементов. Это не позволяет использовать полученную газовую смесь для питания низкотемпературных топливных элементов без значительных затрат на снижение концентрации оксида углерода.

Задачей, на решение которой направлено настоящее изобретение, является повышение эффективности процесса паровой конверсии спирта с целью получения обогащенной по водороду газовой смеси путем предотвращения дезактивации катализаторов и уменьшения образования побочных продуктов.

Поставленная задача решается способом получения синтез-газа или обогащенной водородом газовой смеси паровой конверсией спиртов в реакторе с двумя фиксированными слоями катализатора, причем в реакционную смесь, поступающую на второй слой катализатора, предварительно вводят кислород или двуокись углерода в концентрации не выше 50 об.%.

В качестве спирта используют этанол или метанол-этанольную смесь в виде водно-спиртовой смеси, имеющей концентрацию спирта от 1 до 50 об.%. Процесс в первом слое осуществляют при температуре не ниже 200oС, во втором слое - не ниже 500oС. Реакцию осуществляют при давлении не ниже 0.1 атм.

В зависимости от применяемого в первом слое катализатора процесс паровой конверсии может осуществляться двумя способами.

(1) Этанол или водно-этанольная смесь на первом слое катализатора (катализаторы: платина, палладий, рутений, родий, иридий) превращается в смесь газов СО, СН4 и Н2 по реакции

С2Н5ОН=СН4+СО+Н2, (1)

которая затем на втором слое катализаторе превращается в синтез-газ или обогащенную водородом газовую смесь по реакциям:

СН4 + 2Н2О=СО2+4Н2; (2)

Н2+CO2=CO+H2O (3)

При введении после первого слоя в реакционную смесь кислорода наряду с реакциями (2) и (3) протекает реакция (4):

СН4 + 0.5О2=СО+2Н2. (4)

(2) Этанол или водно-этанольная смесь на первом слое катализатора (катализаторы: медь, серебро, золото) превращается в ацетальдегид и водород по реакции

C2H5OH=CH3CHO+H2 (5)

и затем на втором слое катализатора смесь ацетальдегида и водорода превращается в синтез-газ или обогащенную водородом газовую смесь по реакциям

CH3CHO+3H2O=2CO2+5H2 (6)

H2+CO2=CO+H2O. (7)

При введении после первого слоя в реакционную смесь кислорода наряду с реакциями (6) и (7) протекает реакция (8)

CH3CHO+0.5O2=2CO+2H2. (8)

Реакцию паровой конверсии этанола проводят в проточном реакторе с двумя фиксированными слоями катализатора. Реактор представлял собой кварцевую трубку с внутренним диаметром 8 мм. Слои состояли из 0.5-1 г катализатора, смешанного с 5 г инертного материала SiC. Объемная скорость варьируется в интервале 1000-100000 час-1, температура первого слоя - 200-450oС, температура второго слоя 650-800oС. Реакция протекает в интервале давлений 1-10 атм. Реакционная газовая смесь имеет состав от 1 до 50 об.% С2Н5ОН в Н2О. Все представленные данные получены после работы катализаторов в течение 25 часов.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

Паровую конверсию этанола в обогащенную водородом смесь проводят при атмосферном давлении в проточном реакторе с двумя фиксированными слоями катализатора. Процесс в первом слое осуществляют на катализаторе 1 мас.% Pd/C при температуре 330oС, объемной скорости 2200 ч-1 и атмосферном давлении. Реакционная смесь состоит из 11.2 об.% С2Н5ОН+88,8 об.% Н2О. После первого слоя в газовую смесь вводится 3 об.% О2. Второй слой содержит промышленный катализатор ГИАП-16 в количестве 1 г. Полученные результаты приведены в таблице 1. Данные из прототипа приведены в таблице 1а.

Пример 2.

Паровую конверсию этанола в обогащенную водородом смесь проводят при атмосферном давлении в проточном реакторе с двумя фиксированными слоями катализатора. Первый слой содержит катализатор 15 мас.% Сu/С, и процесс на нем осуществляют при температуре 340oС, объемной скорости 100000 ч-1 и атмосферном давлении. Реакционная смесь состоит из 15.3 об.% C2H5OH+84.7 об.% H2O. После первого слоя в газовую смесь вводится 3.5 об.% О2. Второй слой содержит промышленный катализатор ГИАП-16 в количестве 1 г. Полученные результаты приведены в таблице 2. данные из прототипа приведены в таблице 2а.

Пример 3.

Паровую конверсию этанол-метанольной смеси в обогащенную водородом смесь проводят при атмосферном давлении в проточном реакторе с двумя фиксированными слоями катализатора. Реакционная газовая смесь состоит из 10 об.% 2Н5OН+10 об. % СН2ОН+80 об.% Н2О. Первый слой содержит катализатор 1 мас.% Pd/C, и на нем осуществляют процесс паровой конверсии при температуре 330oС и объемной скорости подачи смеси 2200 ч-1. После первого слоя в газовую смесь вводится 3.5 об.% О2. Второй слой содержит промышленный катализатор ГИАП-16 в количестве 1 г. Полученные результаты приведены в таблице 3. Данные из прототипа приведены в таблице 3а.

Пример 4.

Паровую конверсию этанола в обогащенную водородом смесь проводят при атмосферном давлении в проточном реакторе с двумя фиксированными слоями катализатора. Процесс в первом слое осуществляют на катализаторе 1 мас.% Pd/C при температуре 330oС, объемной скорости 2200 ч-1 и атмосферном давлении. Реакционная смесь состоит из 10 об.% C2H5OH+90 об.% Н2О. После первого слоя в реакционную смесь вводится 4 об.% О2. Второй слой содержит промышленный катализатор ГИАП-16 в количестве 1 г. Полученные результаты приведены в таблице 4.

Пример 5.

Паровую конверсию этанола в обогащенную водородом смесь проводят при атмосферном давлении в проточном реакторе с двумя фиксированными слоями катализатора. Процесс в первом слое осуществляют на катализаторе 1 мас.% Pd/C при температуре 330oС, объемной скорости 2400 ч-1 и атмосферном давлении. Реакционная смесь состоит из 11.2 об.% С2Н5OН+88.8 об.% H2O. После первого слоя в реакционную смесь вводится 3 об.% СО2. Второй слой содержит промышленный катализатор ГИАП-16 в количестве 1 г. Полученные результаты приведены в таблице 5.

Приведенные примеры демонстрируют высокую активность, селективность и стабильность работы предлагаемых катализаторов в процессе конверсии водно-спиртовых смесей в обогащенную водородом газовую смесь.

Предлагаемый способ переработки этанола, в том числе и биоэтанола, в обогащенную водородом газовую смесь позволяет использовать водноспиртовые смеси без их дистилляции, что имеет важное технологическое значение. Катализаторы имеют широкую возможность варьирования их химического состава. Предлагаемый способ позволяет снизить образование побочных продуктов, а также продуктов, являющихся ядами для низкотемпературных топливных элементов.

Класс C01B3/38 с использованием катализаторов

способ конверсии метана -  патент 2525124 (10.08.2014)
способ повышения качества природного газа с высоким содержанием сероводорода -  патент 2522443 (10.07.2014)
способ получения водорода и водород-метановой смеси -  патент 2520482 (27.06.2014)
способ преобразования солнечной энергии в химическую и аккумулирование ее в водородсодержащих продуктах -  патент 2520475 (27.06.2014)
способ конверсии метана -  патент 2517505 (27.05.2014)
системы и способы производства сверхчистого водорода при высоком давлении -  патент 2516527 (20.05.2014)
способ получения водорода -  патент 2515477 (10.05.2014)
способ конверсии дизельного топлива и конвертор для его осуществления -  патент 2515326 (10.05.2014)
способ получения синтез-газа для производства аммиака -  патент 2510883 (10.04.2014)
пористый керамический каталитический модуль и способ переработки отходящих продуктов процесса фишера-тропша с его использованием -  патент 2506119 (10.02.2014)

Класс B01J23/40 металлов группы платины

объединенный способ каталитичеcкого крекинга в псевдоожиженном слое катализатора для получения высококачественных углеводородных смесей в качестве топлива -  патент 2518119 (10.06.2014)
способ получения мембранного катализатора и способ дегидрирования углеводородов с использованием полученного катализатора -  патент 2497587 (10.11.2013)
способ модификации электрохимических катализаторов на углеродном носителе -  патент 2495158 (10.10.2013)
способ приготовления катализатора для получения синтез-газа, катализатор, приготовленный по этому способу, и способ получения синтез-газа с его использованием -  патент 2491118 (27.08.2013)
комплексный способ крекинга с псевдоожиженным катализатором для получения смесей углеводородов, обладающих высоким топливным качеством -  патент 2481388 (10.05.2013)
гидрирование иминов -  патент 2476422 (27.02.2013)
способ получения синтетических авиационных топлив из углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления -  патент 2473664 (27.01.2013)
катализатор гидрирования ароматических углеводородов и способ получения и применения такого катализатора -  патент 2469789 (20.12.2012)
способ получения катализатора на углеродном носителе -  патент 2467798 (27.11.2012)
способ получения дициклопентена (трицикло-[5.2.1.02,6]децена-3) -  патент 2459793 (27.08.2012)

Класс B01J23/48 серебро или золото

Класс B01J23/72 медь

катализатор для окисления сернистых соединений -  патент 2529500 (27.09.2014)
способ получения фенилэтинил производных ароматических соединений -  патент 2524961 (10.08.2014)
способ применения слоистых сферических катализаторов с высоким коэффициентом доступности -  патент 2517187 (27.05.2014)
фотокатализатор на основе оксида титана и способ его получения -  патент 2508938 (10.03.2014)
способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя -  патент 2492160 (10.09.2013)
катализатор конверсии водяного газа низкой температуры -  патент 2491119 (27.08.2013)
системы и способы удаления примесей из сырьевой текучей среды -  патент 2490310 (20.08.2013)
катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии -  патент 2489207 (10.08.2013)
способ повышения времени стабильной работы катализатора в реакции гидроалкилирования бензола ацетоном с получением кумола и способ получения кумола гидроалкилированием бензола ацетоном -  патент 2484898 (20.06.2013)
способы удаления примесей из потоков сырья для полимеризации -  патент 2480442 (27.04.2013)
Наверх