схема передачи данных со станцией и с ответной схемой
Классы МПК: | H04B5/00 Передающие системы с использованием поля ближней зоны действия антенны, например с использованием шлейфа с индуктивной связью G06K19/07 с кристаллами интегральных схем G06K7/08 с помощью средств, определяющих изменение электростатического или магнитного поля, например путем определения изменения емкости между электродами |
Автор(ы): | РАЙНЕР Роберт (DE) |
Патентообладатель(и): | СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE) |
Приоритеты: |
подача заявки:
1997-09-25 публикация патента:
10.10.2003 |
Изобретение относится к схеме передачи данных, содержащей станцию и предназначенную для карточки с встроенным микропроцессором ответную схему. Задачей изобретения является создание схемы передачи данных известного из уровня техники типа, которая всегда работает надежно. Станция имеет первичную катушку с генератором сигнала для создания переменного магнитного поля с несущей частотой и амплитудный демодулятор. Ответная схема имеет вторичную катушку и амплитудный модулятор для оказания влияния на нагрузку вторичной катушки путем модуляции переменного магнитного поля с несущей частотой информационным сигналом. Ответная схема имеет также фазовый модулятор для оказания влияния на электрические свойства вторичной катушки, причем амплитудный модулятор и/или фазовый модулятор выполнены так, что обеспечивается возможность управления каждым из них, по меньшей мере, одним сигналом, модулированным информационным сигналом. 4 с. и 17 з.п. ф-лы, 6 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6
Формула изобретения
1. Схема передачи данных, содержащая станцию (1) и предназначенную, в частности, для карточки с встроенным микропроцессором ответную схему (2), причем станция (1) имеет первичную катушку (4) с генератором (3) сигнала для создания переменного магнитного поля с несущей частотой, а также амплитудный демодулятор, подключенный к первичной катушке, причем ответная схема (2) имеет вторичную катушку (7), а также амплитудный модулятор (13) для оказания влияния на нагрузку вторичной катушки (17), а амплитудный модулятор (13) выполнен так, что обеспечивается возможность модуляции переменного магнитного поля с несущей частотой информационным сигналом, отличающаяся тем, что ответная схема (2) имеет фазовый модулятор (14) для оказания влияния на электрические свойства вторичной катушки (7), причем амплитудный модулятор (13) и/или фазовый модулятор (14) выполнен с возможностью управления каждым из них, по меньшей мере одним сигналом, модулированным информационным сигналом. 2. Схема передачи данных, содержащая станцию (1) и предназначенную, в частности, для карточки с встроенным микропроцессором ответную схему (2), причем станция (1) имеет первичную катушку (4) с генератором (3) сигнала для создания переменного магнитного поля с несущей частотой, а также демодулятор, подключенный к первичной катушке, причем ответная схема (2) имеет вторичную катушку (7), а также амплитудный модулятор (13) для оказания влияния на электрические свойства вторичной катушки (7), причем амплитудный модулятор (13) выполнен так, что обеспечивается возможность модуляции переменного магнитного поля с несущей частотой информационным сигналом, отличающаяся тем, что ответная схема (2) имеет фазовый модулятор (14) для оказания влияния на электрические свойства вторичной катушки (7), причем амплитудный модулятор (13) и/или фазовый модулятор (14) выполнены с возможностью управления каждым из них, по меньшей мере одним сигналом, модулированным информационным сигналом, а демодулятор (6) выполнен в виде фазового демодулятора. 3. Схема передачи данных по п.1 или 2, отличающаяся тем, что ответная схема (2) выполнена так, что имеется такая возможность управления амплитудным модулятором (13) и/или фазовым модулятором (14), что фазовая модуляция смещена по фазе относительно амплитудной модуляции. 4. Схема передачи данных по п.3, отличающаяся тем, что ответная схема (2) выполнена так, что имеется такая возможность управления амплитудным модулятором (13) и/или фазовым модулятором (14), что фазовая модуляция опережает, соответственно, отстает относительно амплитудной модуляции на 90o периода модулирующего сигнала. 5. Схема передачи данных по любому из предшествующих пунктов, отличающаяся тем, что ответная схема (2) выполнена так, что амплитудный модулятор (13) выполнен в виде сопротивления, установленного с возможностью подключения параллельно вторичной катушке (7). 6. Схема передачи данных по любому из предшествующих пунктов, отличающаяся тем, что ответная схема (2) выполнена так, что фазовый модулятор (14) выполнен в виде конденсатора, установленного с возможностью подключения параллельно вторичной катушке (7). 7. Схема передачи данных по любому из предшествующих пунктов, отличающаяся тем, что ответная схема (2) имеет, по меньшей мере, одно устройство (27, 28) промежуточной модуляции для модуляции информационным сигналом вспомогательного несущего сигнала. 8. Схема передачи данных по любому из предшествующих пунктов, отличающаяся тем, что ответная схема (2) имеет устройство (23, 24) выделения тактового сигнала для выделения вспомогательного несущего сигнала из переменного магнитного поля. 9. Схема передачи данных по любому из предшествующих пунктов, отличающаяся тем, что ответная схема (2) имеет устройство сдвига фазы, которое выполнено так, что обеспечивается возможность создания из сигнала системного такта по меньшей мере одного первого и по меньшей мере одного второго вспомогательных несущих сигналов, сдвинутых относительно друг друга по фазе на предварительно заданную величину. 10. Схема передачи данных по любому из предшествующих пунктов, отличающаяся тем, что устройство сдвига фазы имеет, по меньшей мере, один делитель (24) частоты. 11. Схема передачи данных по любому из предшествующих пунктов, отличающаяся тем, что демодулятор (6) имеет со стороны входа полосовой фильтр. 12. Схема передачи данных по п.11, отличающаяся тем, что средняя частота полосового фильтра в основном равна сумме или разнице частот несущего сигнала и вспомогательного несущего сигнала. 13. Схема передачи данных по любому из предшествующих пунктов, отличающаяся тем, что ответная схема и/или станция выполнены в виде схем, предназначенных для обработки цифровых сигналов. 14. Ответная схема, в частности, для использования в ретрансляторе или в карточке с встроенным микропроцессором, содержащая вторичную катушку (7), а также амплитудный модулятор (13) для оказания влияния на электрические свойства вторичной катушки (7), причем амплитудный модулятор (13) выполнен так, что обеспечивается возможность модуляции внешнего переменного магнитного поля с несущей частотой информационным сигналом, отличающаяся тем, что ответная схема (2) имеет фазовый модулятор (14) для оказания влияния на электрические свойства вторичной катушки (7), причем амплитудный модулятор (13) и/или фазовый модулятор (14) выполнены с возможностью управления каждым, по меньшей мере, одним сигналом, модулированным информационным сигналом. 15. Способ модуляции внешнего переменного магнитного поля станции (1) с помощью модулирующего сигнала, созданного ответной схемой (2) на основе информационного сигнала, отличающийся тем, что модуляцию производят так, что одну боковую полосу модулированного переменного магнитного поля создают более сильной, чем другую полосу. 16. Способ по п. 15, отличающийся тем, что модуляцию переменного магнитного поля производят как с помощью амплитудной модуляции, так и с помощью фазовой модуляции. 17. Способ по п.16, отличающийся тем, что амплитудную модуляцию производят со сдвигом по фазе относительно фазовой модуляции. 18. Способ по п.17, отличающийся тем, что сдвиг по фазе составляет 90o, а именно в сторону опережения или отставания. 19. Способ по любому из пп.15-18, отличающийся тем, что амплитудную модуляцию производят с помощью управляемого амплитудно-модулированным сигналом амплитудного модулятора (13), фазовую модуляцию производят с помощью управляемого фазомодулированным сигналом фазового модулятора (14), а амплитудно-модулированный сигнал и/или фазомодулированный сигнал создают посредством модуляции информационным сигналом соответствующего вспомогательного несущего сигнала. 20. Способ по п.19, отличающийся тем, что вспомогательный несущий сигнал, соответственно, вспомогательные несущие сигналы выделяют из переменного магнитного поля посредством деления частоты. 21. Способ по п.19 или 20, отличающийся тем, что вспомогательные несущие сигналы сдают так, что между ними существует сдвиг по фазе, равный, в частности, 90o.Описание изобретения к патенту
Изобретение относится к схеме передачи данных, содержащей станцию и ответную схему, причем станция имеет первичную катушку с генератором сигналов для создания переменного магнитного поля с несущей частотой, а также демодулятор, причем ответная схема имеет вторичную катушку, а также амплитудный модулятор для оказания влияния на нагрузку вторичной катушки, и причем амплитудный модулятор выполнен так, что обеспечивается возможность модуляции переменного магнитного поля информационным сигналом. Относящиеся к уровню техники схемы передачи данных используют, в частности, в системах SPR (одновременное энергоснабжение и считывание) с индуктивной передачей энергии и информации. Такие системы SPR используют также в бесконтактных карточках с встроенным микропроцессором. При работе генератор сигналов станции создает в первичной катушке периодический сигнал, в результате чего в ее области образуется индуктивное переменное поле, соответственно, переменное магнитное поле, которое в области вокруг первичной катушки действует как так называемое "ближнее поле". В противоположность исходящей из первичной катушки электромагнитной волны в ближнем поле первичной катушки проявляется в первую очередь чисто индуктивное действие исходящего от первичной катушки сигнала. В области этого ближнего поля может быть расположена ответная схема, которая получает ее энергопитание, в частности, из переменного магнитного поля. Для этого ответная схема снабжена вторичной катушкой, в которой переменное магнитное поле индуцирует переменное напряжение. Индуцированное там переменное напряжение выпрямляется в ответной схеме, сглаживается и подается на блок создания информационного сигнала. Блок создания информационного сигнала так соединен с расположенным, в частности, в области вторичной катушки амплитудным модулятором, что он в зависимости от создаваемого блоком информационного сигнала может изменять нагрузку вторичной катушки. Для этого, как известно из уровня техники, амплитудный модулятор выполняют как изменяемую резистивную нагрузку, причем резистивную нагрузку вторичной катушки изменяют соответствующим образом в соответствии с информационным сигналом. Такое изменение резистивной нагрузки вторичной катушки приводит к тому, что на стороне станции изменяются также свойства первичной катушки, поскольку между первичной катушкой и вторичной катушкой существует индуктивная связь. Коэффициент связи этой индуктивной связи составляет, как правило, между одним и пятью процентами. Указанным выше образом можно переменное магнитное поле модулировать информационным сигналом ответной схемы, если ответная схема находится в ближней области первичной катушки. На стороне первичной катушки амплитудный демодулятор считывает изменяющееся согласно информационному сигналу падение напряжения на первичной катушке и реконструирует из него информационный сигнал. С помощью соответствующих уровню техники схем передачи данных можно надежно снабжать ответные схемы электроэнергией, причем, кроме того, обеспечивается то, что передаваемый ответной схемой информационный сигнал может быть считан на стороне станции. Однако при практическом использовании схем передачи данных согласно уровню техники было установлено, что, в частности, при массовом изготовлении схем передачи данных часто проявляются случаи, в которых информационный сигнал, которым в ответной схеме модулировано переменное магнитное поле, нельзя реконструировать на стороне станции. Это приводит, в частности, при использовании передающей схемы согласно уровню техники в предназначенных для автомобилей блокировочных устройствах к тому, что владелец автомобиля несмотря на авторизацию не может использовать свой автомобиль. В GB-A-2 232 851 раскрыт трансформатор со слабой связью, через который можно снабжать энергией измерительную схему, например, на подвижной части автомобиля. Трансформатор нагружается измерительной электроникой через переключатель, а именно с частотой, которая в несколько раз превосходит частоту энергоснабжения. Эта периодическая нагрузка модулируется по фазе, когда изменяется уровень двоичного информационного сигнала, который передает измерительная схема. Модулированный сигнал передается обратно в первичную катушку и для выделения информации демодулируется посредством перемножения с периодическим сигналом. Задачей изобретения является создание схемы передачи данных известного из уровня техники типа, которая всегда работает надежно. Эта задача решается согласно изобретению тем, что ответная схема имеет дополнительно фазовый модулятор для оказания влияния на электрические свойства вторичной катушки, причем амплитудный модулятор и/или фазовый модулятор выполнены так, что обеспечивается возможность управления им, соответственно, ими, в частности, по меньшей мере одним модулирующим сигналом. Предмет изобретения основывается на существенном для изобретения понимании того, что, в частности, при массовом изготовлении ответной схемы вследствие производственных допусков первичный контур с первичной катушкой и вторичный контур с вторичной катушкой могут быть расстроены. При определенных, зависящих, в частности, от расстояния между первичной катушкой и вторичной катушкой коэффициентах связи это приводит к тому, что принимаемое напряжение в первичной катушке больше не модулировано согласно чисто амплитудной модуляции. Принимаемое напряжение в первичной катушке при определенных условиях модулировано согласно фазовой модуляции. Поскольку на стороне станции предусмотрен только амплитудный модулятор, то он не может демодулировать модулированный по фазе сигнал, что проявляется как так называемая нулевая точка при демодуляции принятого сигнала. Благодаря выполнению ответной схемы согласно главному пункту 1 формулы изобретения достигается то, что переменное магнитное поле можно подвергать как амплитудной модуляции, так и фазовой модуляции. При этом посредством подходящей активации, соответственно, деактивации амплитудного модулятора и/или фазового модулятора можно достичь того, что обе модуляции сдвинуты, например, относительно модулирующего сигнала на 90o. Если обе модуляции выполнены подходяще относительно их силы, так что они создают приблизительно равные по амплитуде боковые полосы, то при подходящем сдвиге амплитудной и фазовой модуляции получают гашение одной боковой полосы. Благодаря этому по отношению к амплитудной модуляции предотвращаются так называемые "нулевые точки модуляции" независимо от производственных допусков и изменяющегося расстояния между станцией и ответной схемой. Кроме того, как амплитудный демодулятор, так и, согласно пункту 2 формулы изобретения, фазовый демодулятор может в любое время демодулировать сигнал, поскольку модуляция согласно изобретению переменного магнитного поля приводит только к фазовым различиям принимаемого информационного сигнала, которые не оказывают помех при подходящем кодировании информационного сигнала. При этом в соответствии с основной идеей изобретения достаточно уже того, что фазовую модуляцию и амплитудную модуляцию на стороне ответной схемы выполняют так, что одна боковая полоса переменного магнитного поля будет ослаблена относительно другой боковой полосы. А именно, уже за счет этой меры достигается преимущество изобретения, состоящее в том, что на стороне станции достаточно только одного амплитудного демодулятора, соответственно, только фазового демодулятора для демодулирования модулированного информационным сигналом несущего сигнала. Амплитудный модулятор выполнен согласно изобретению как подключаемое параллельно вторичной катушке сопротивление. Фазовый модулятор может быть выполнен согласно изобретению как подключаемый параллельно вторичной катушке конденсатор, причем конденсатор имеет функцию конденсатора сдвига фазы. Кроме того, в другой модификации изобретения ответная схема снабжена промежуточным модуляционным устройством для модулирования информационным сигналом вспомогательного несущего сигнала, причем частота вспомогательного несущего сигнала является, в частности, отличной от частоты несущего сигнала, соответственно, переменного магнитного поля. Вспомогательный несущий сигнал можно получать предпочтительно из несущего сигнала, а именно за счет использования делителя частоты в системе выделения тактового сигнала. В этом случае сигнал системного такта служит опосредованно для управления фазовым и/или амплитудным модулятором. Однако вспомогательный несущий сигнал можно создавать также другим способом. Затем согласно изобретению результат модуляции информационным сигналом вспомогательного несущего сигнала модулируют переменное магнитное поле. Благодаря этому получают особенно простое построение амплитудного демодулятора, поскольку результат модуляции можно особенно просто демодулировать. При этом ответная схема может иметь устройство сдвига фазы, которое может быть выполнено так, что можно из сигнала системного такта создавать по меньшей мере первый и по меньшей мере второй управляющие тактовые сигналы, сдвинутые относительно друг друга на определенную величину фазы. При этом устройство сдвига фазы снабжено, в частности, по меньшей мере одним делителем частоты. Благодаря этому без заслуживающих упоминания затрат создают из колебаний несущего сигнала переменного магнитного поля сдвинутые точно на 90o управляющие тактовые сигналы, которые можно непосредственно использовать для управления амплитудным и фазовым модулятором. Эти полученные из несущего сигнала, сдвинутые по фазе колебания можно использовать в качестве вспомогательных несущих сигналов, которые модулируются информационным сигналом. Амплитудный демодулятор имеет со стороны входа, в частности, полосовой фильтр, средняя частота которого в основном равна сумме или разнице частот несущего сигнала и вспомогательного сигнала. Особенно простое построение схемы передачи данных согласно изобретению получают тогда, когда ответная схема и/или станция выполнены так, что они могут обрабатывать цифровые сигналы. Такие схемы можно особенно просто реализовать с помощью обычных цифровых схемных решений. Кроме того, изобретение относится к ответной схеме, которая предназначена, в частности, для использования в ответчиках или в карточках с встроенным микропроцессором, причем ответная схема снабжена вторичной катушкой, а также амплитудным модулятором для оказания влияния на резистивную нагрузку вторичной катушки. При этом амплитудный модулятор выполнен так, что обеспечивается возможность модуляции внешнего переменного магнитного поля информационным сигналом, созданным, в частности, ответной схемой, если ответная схема находится в ближней области той первичной катушки, которая создает внешнее переменное магнитное поле. При этом ответная схема имеет согласно изобретению дополнительно фазовый модулятор для оказания влияния на электрические свойства вторичной катушки, причем амплитудный модулятор и/или фазовый модулятор выполнены так, что он, соответственно, они могут управляться активирующим сигналом. При этом ответную схему можно модифицировать, в частности, согласно пунктам 3-13 формулы изобретения, благодаря чему образуются предпочтительные варианты выполнения ответной схемы согласно изобретению. Изобретение относится также к способу модуляции внешнего переменного магнитного поля станции модулирующим сигналом, создаваемым ответной схемой на основе информационного сигнала. Согласно изобретению модуляцию проводят так, что одну боковую полосу модулированного переменного магнитного поля создают более сильной, чем другую боковую полосу. Благодаря этому сигнальная мощность модуляции переменного магнитного поля концентрируется в одном канале боковой полосы и исчезают нулевые точки модуляции. Предпочтительные модификации способа согласно изобретению следуют из зависимых пунктов 16-21 формулы изобретения. Изобретение поясняется ниже подробней на примере выполнения с помощью чертежей, на которых изображено:фиг. 1 - принципиальное построение схемы передачи данных согласно изобретению со станцией и ответной схемой,
фиг.2 - блок создания информационного сигнала ответной схемы по фиг.1,
фиг. 3 - векторная диаграмма модуляции переменного магнитного поля схемы передачи данных по фиг.1,
фиг. 4 - векторная диаграмма модуляции переменного магнитного поля схемы передачи данных по фиг.1 в момент времени t=0,
фиг. 5 - векторная диаграмма модуляции переменного магнитного поля схемы передачи данных по фиг.1 в момент времени t=90o,
фиг. 6 - векторная диаграмма модуляции переменного магнитного поля схемы передачи данных по фиг.1 в момент времени t > 90o. На фиг.1 показана схема передачи данных согласно изобретению, содержащая станцию 1 и ответную схему 2. Станция 1 имеет генератор 3 сигналов, который создает в первичном контуре сигнал переменного напряжения с несущей частотой



При работе схемы передачи данных согласно изобретению ответную схему располагают в области ближнего поля первичной катушки 4, а именно так, что вторичная катушка 7 ответной схемы 2 находится в непосредственной близости от первичной катушки 4. Тогда переменное магнитное поле индуцирует во вторичной катушке переменное напряжение с частотой, которая совпадает с несущей частотой













Класс H04B5/00 Передающие системы с использованием поля ближней зоны действия антенны, например с использованием шлейфа с индуктивной связью
Класс G06K19/07 с кристаллами интегральных схем
Класс G06K7/08 с помощью средств, определяющих изменение электростатического или магнитного поля, например путем определения изменения емкости между электродами