способ измерения напряженности электрического поля

Классы МПК:G01R29/08 для измерения характеристик электромагнитного поля 
G01R29/12 для измерения электростатических полей 
Автор(ы):
Патентообладатель(и):Омский государственный технический университет
Приоритеты:
подача заявки:
2001-01-17
публикация патента:

Изобретение относится к измерительной технике и может быть использовано для измерения напряженности электрического поля в широком пространственном диапазоне с повышенной точностью. Техническим результатом изобретения является осуществление возможности измерения вектора напряженности электрического поля в широком пространственном диапазоне с повышенной точностью. В способе измерения напряженности электрического поля в исследуемое пространство помещают одновременно n пар проводящих чувствительных элементов, входящих в общий датчик, симметрирующий наружные поверхности датчика относительно координатных плоскостей с расположением центров поверхностей чувствительных элементов попарно на n осях выбранной системы координат симметрично относительно ее начала. Датчик ориентируют и поддерживают так, чтобы вектор напряженности электрического поля был равноудален от координатных осей датчика, т.е., чтобы его составляющие по координатным осям были равны. Конфигурацию и размер чувствительных элементов выбирают из условия минимума погрешности от неоднородности электрического поля при максимальном пространственном диапазоне измерения электрического поля. Модуль вектора напряженности измеряемого электрического поля определяют измерением одной из составляющих датчика. При правильном выборе конфигурации и размеров чувствительных элементов погрешность измерения может составить менее 1% на расстояниях от источника поля и проводящих поверхностей больших или равных 1,5способ измерения напряженности электрического поля, патент № 2214611R, где R - условный радиус тела датчика. Кроме этого упрощается устройство обработки сигналов датчика и сужается диапазон входных сигналов устройства. 1 ил.
Рисунок 1

Формула изобретения

Способ измерения напряженности электрического поля, основанный на помещении в исследуемое пространство одновременно n пар проводящих чувствительных элементов, входящих в общий датчик, симметрировании наружных поверхностей датчика относительно координатных плоскостей с расположением центров поверхностей чувствительных элементов попарно на n осях выбранной системы координат симметрично относительно ее начала, отличающийся тем, что датчик ориентируют и затем поддерживают так, чтобы вектор напряженности электрического поля был равноудален от координатных осей датчика, т.е., чтобы его составляющие по координатным осям были равны, а конфигурацию и размер чувствительных элементов выбирают из условия минимума погрешности от неоднородности электрического поля при максимальном пространственном диапазоне

способ измерения напряженности электрического поля, патент № 2214611

где n = 2, 3;

Еi - составляющие вектора напряженности электрического поля по координатным осям, зависящие от конфигурации и размеров чувствительных элементов, а также от пространственного диапазона измерений;

Е0 - модуль вектора напряженности однородного электрического поля,

при этом модуль вектора напряженности измеряемого электрического поля определяют измерением одной из составляющих датчика.

Описание изобретения к патенту

Изобретение относится к области измерительной технике и может быть использовано для измерения напряженности электрического поля в широком пространственном диапазоне с повышенной точностью.

Известен однокоординатный способ измерения напряженности электрического поля [1] , основанный на помещении в исследуемое пространство одной пары чувствительных элементов, входящих в общий датчик и находящихся на координатной оси, проходящей через центр датчика, ориентировании этих чувствительных элементов в электрическом поле до момента получения максимальной составляющей и определении модуля вектора напряженности путем измерения этой составляющей.

Достоинство такого способа измерения напряженности электрического поля, заключается в том, что устройство, реализующее этот способ, имеет узкий диапазон входных сигналов и простую схемную реализацию.

Недостатком этого способа является низкая точность измерения вектора напряженности неоднородного электрического поля и узкий пространственный диапазон измерения.

Известен также двухкоординатный способ измерения напряженности электрического поля [2] , основанный на помещении в исследуемое пространство двух пар чувствительных элементов, входящих в общий датчик и находящихся на двух координатных осях, проходящих через центр датчика, ориентировании этих чувствительных элементов в двух плоскостях электрического поля, измерении двух его составляющих и определении модуля вектора напряженности путем геометрического суммирования измеренных составляющих.

Недостатком этого способа также является низкая точность измерения вектора напряженности неоднородного электрического поля, узкий пространственный диапазон измерения и расширенный диапазон входных сигналов устройства, реализующего этот способ.

Наиболее близким к заявляемому способу является способ измерения напряженности электрического поля [3], заключающийся в том, что в исследуемое пространство одновременно помещают три пары чувствительных элементов, входящих в общий датчик, симметрируют наружную поверхность датчика относительно координатных плоскостей, располагают центры наружных поверхностей чувствительных элементов попарно на трех осях выбранной системы координат симметрично относительно его начала с последующим измерением трех координатных составляющих и определением напряженности измеряемого поля путем геометрического суммирования этих составляющих.

Общим недостатком известных способов и прототипа является то, что их можно использовать при измерении напряженности электрического поля в узком пространственном диапазоне, т.е. на расстоянии от источников поля и проводящих поверхностей, значительно превышающих размеры датчика. В этой области электрическое поле можно считать однородным. При приближении датчика к источнику поля или проводящим поверхностям электрическое поле становится неоднородным и появляется зависимость измеряемой напряженности от ориентации датчика, что приводит к значительным погрешностям измерения.

Кроме этого, устройства, реализующие эти способы, имеют расширенные диапазоны измерения входных сигналов и обладают повышенной сложностью реализации.

Задача изобретения - осуществление возможности измерения вектора напряженности электрического поля в широком пространственном диапазоне с повышенной точностью.

Задача достигается путем помещения в исследуемое пространство одновременно n-пар проводящих чувствительных элементов, входящих в общий датчик, симметрировании наружных поверхностей датчика относительно координатных плоскостей с расположением центров поверхностей чувствительных элементов попарно на n осях выбранной системы координат симметрично относительно ее начала, при этом датчик ориентируют и затем поддерживают так, чтобы вектор напряженности электрического поля был равноудален от координатных осей датчика, т. е., чтобы его составляющие по координатным осям были равны, а конфигурацию и размер чувствительных элементов выбирают из условия минимума погрешности от неоднородности электрического поля при максимальном пространственном диапазоне измерения

способ измерения напряженности электрического поля, патент № 2214611

где n=2; 3;

Еi - составляющие вектора напряженности электрического поля по координатным осям, зависящие от конфигурации и размеров чувствительных элементов, а также от пространственного диапазона измерений;

Е0 - модуль вектора напряженности однородного электрического поля.

При этом модуль вектора измеряемого электрического поля определяют измерением одной из составляющих датчика.

Предлагаемый способ поясняется чертежом. Чувствительные элементы 1-6 представляют собой наружные поверхности шаровых сегментов, симметричных относительно плоскостей декартовой системы координат, например, в трех ординатах тела 7, представляющего из себя в частном случае шар. Центры 8-13 этих поверхностей попарно расположены на осях той же системы координат симметрично относительно ее начала 14. Чувствительные элементы, в частном случае представляющие собой шаровые сегменты, слои, треугольники, квадраты и их сочетания, соединены в частном случае через резисторы, а в общем случае через дифференциальные преобразователи 15-17, и логическое устройство 18 со звуковым, световым или иным сигнализатором 19 равенства составляющих вектора напряженности по координатным осям, а выход одного из дифференциальных преобразователей, например, по оси X, соединен с измерительным прибором 20.

Способ измерения реализуется следующим образом. Датчик с чувствительными элементами помещают в пространство исследуемого поля и ориентируют его в нем до момента равенства составляющих вектора напряженности электрического поля по всем координатным осям, и удерживая датчик в этом положении, измеряют одну из составляющих вектора напряженности электрического поля, по которой и определяют его модуль. Конфигурацию и размер чувствительных элементов выбирают из условия минимума погрешности от неоднородности электрического поля при максимальном пространственном диапазоне измерения

способ измерения напряженности электрического поля, патент № 2214611

где n=2; 3;

Еi - составляющие вектора напряженности электрического поля по координатным осям, зависящие от конфигурации и размеров чувствительных элементов, а также от пространственного диапазона измерений;

Е0 - модуль вектора напряженности однородного электрического поля.

Используя предлагаемый способ измерения и при правильном выборе конфигурации и размеров чувствительных элементов можно добиться погрешности измерения менее 1% на расстояниях от источника поля и проводящих поверхностей больших или равных 1,5способ измерения напряженности электрического поля, патент № 2214611R, где R - условный радиус тела датчика. Кроме этого упрощается устройство обработки сигналов датчика и сужается диапазон входных сигналов устройства.

Литература

1. Морозов Ю.А., Громов О.М. Прибор для измерения напряженности электрического поля промышленной частоты // Научные работы институтов охраны труда ВЦСПС. - М.: Профиздат. - 1970. - вып. 65. - С.41-44.

2. Bocker H., Wilhelmy L. Messung der elektrischen Feldstarke bei hohen transienten und periodisch zeitabhangigen Spannungen // Elektrotechniche zeitschrift. - 1970. - A91. - 8. - S.427-430.

3. A.с. 473128 (СССР), МКИ G 01 R 29/14. Способ измерения напряженности электрического поля / B.C. Акселърод, К.Б.Щегловский, В.А.Мондрусов. Опубл. 1975, БИ 21.

Класс G01R29/08 для измерения характеристик электромагнитного поля 

устройство контроля электромагнитного поля вторичных излучателей -  патент 2527315 (27.08.2014)
способ и система мониторинга электромагнитных помех во временной области -  патент 2516201 (20.05.2014)
радиометр с трехопорной модуляцией -  патент 2510513 (27.03.2014)
устройство для определения, по меньшей мере, одной величины, связанной с электромагнитным излучением тестируемого объекта -  патент 2510512 (27.03.2014)
устройство и способ для определения, по меньшей мере, одной величины, характеризующей электромагнитное излучение исследуемого объекта -  патент 2510511 (27.03.2014)
способ динамического обнаружения малогабаритных скрытых средств, способствующих утечке информации, несанкционированно установленных на подвижном объекте -  патент 2503023 (27.12.2013)
способ определения местоположений и мощностей источников излучения однопозиционной локационной станцией -  патент 2499273 (20.11.2013)
сканирующий радиометр -  патент 2495443 (10.10.2013)
индикатор поля свч излучения -  патент 2485670 (20.06.2013)
радиометр для измерения глубинных температур объекта (радиотермометр) -  патент 2485462 (20.06.2013)

Класс G01R29/12 для измерения электростатических полей 

компенсационный электростатический флюксметр -  патент 2501029 (10.12.2013)
подводная измерительная система -  патент 2488850 (27.07.2013)
способ определения контактной разности потенциалов и устройство для его осуществления -  патент 2471198 (27.12.2012)
способ и устройство для измерения постоянной времени релаксации объемного заряда в диэлектрических жидкостях -  патент 2453857 (20.06.2012)
способ измерения напряженности электрического поля -  патент 2445639 (20.03.2012)
датчик измерителя напряженности электростатического поля -  патент 2442183 (10.02.2012)

способ измерения напряженности электрических полей электронно-оптическим методом -  патент 2442182 (10.02.2012)

датчик электростатического поля и способ измерения электростатического поля -  патент 2414717 (20.03.2011)
датчик электрического поля для работы в морской среде -  патент 2402029 (20.10.2010)
устройство для измерения электрической проводимости атмосферы -  патент 2397515 (20.08.2010)
Наверх