сплав на основе никеля и изделие, выполненное из него
Классы МПК: | C22C19/05 с хромом |
Автор(ы): | Каблов Е.Н., Бунтушкин В.П., Базылева О.А., Фомин А.А., Прокофьев В.П. |
Патентообладатель(и): | Федеральное государственное унитарное предприятие Всероссийский научно-исследовательский институт авиационных материалов "ВИАМ" |
Приоритеты: |
подача заявки:
2002-06-03 публикация патента:
27.10.2003 |
Изобретение относится к области металлургии, а именно к литейным жаропрочным сплавам и изделиям, получаемым методом точного литья по выплавляемым моделям. Сплав предназначен для литых деталей камер сгорания топлива ГТД, высокотемпературного крепежа в авиационных двигателях и для резьбовых захватов высокотемпературных машин для испытания на длительную прочность и ползучесть в условиях статических нагрузок. Технической задачей предлагаемого изобретения является создание сплава и изделия из него, обладающих повышенной жаростойкостью при температурах 1100 и 1250oС, кратковременной прочностью в этом интервале температур и повышенным сопротивлением деформации на сжатие (при осадке). Предлагается сплав на основе никеля, содержащий алюминий, хром, молибден, вольфрам, титан, углерод, который дополнительно содержит цирконий и иттрий при следующем соотношении компонентов, мас.%: алюминий 8,0-9,0; хром 5,0-6,0; молибден 2,5-3,5; вольфрам 4,5-5,5; титан 1,2-2,0; углерод 0,12-0,15; цирконий 0,005-0,04; иттрий 0,3-0,4; никель - остальное, и изделие, выполненное из него. Использование предлагаемого сплава на основе никеля увеличивает ресурс работы изделий авиационной техники в 10-12 раз и повышает точность определения измерений при использовании этого сплава в виде резьбовых захватов высокотемпературных машин для испытания на длительную прочность и ползучесть в условиях статистических нагрузок. 2 с.п. ф-лы, 2 табл.
Рисунок 1
Формула изобретения
1. Сплав на основе никеля, содержащий алюминий, хром, молибден, вольфрам, титан, углерод, отличающийся тем, что он дополнительно содержит цирконий и иттрий, при следующем соотношении компонентов, мас.%:Алюминий - 8,0 - 9,0
Хром - 5,0 - 6,0
Молибден - 2,5 - 3,5
Вольфрам - 4,5 - 5,5
Титан - 1,2 - 2,0
Углерод - 0,12 - 0,15
Цирконий - 0,005 - 0,04
Иттрий - 0,3 - 0,4
Никель - Остальное
2. Изделие из сплава на основе никеля, отличающееся тем, что оно выполнено из сплава по п.1.
Описание изобретения к патенту
Изобретение относится к области металлургии, а именно, к литейным жаропрочным сплавам и изделиям, получаемым методом точного литья по выплавляемым моделям. Сплав предназначен для литых деталей камер сгорания топлива ГТД, высокотемпературного крепежа в авиационных двигателях, для резьбовых захватов высокотемпературных машин для испытания на длительную прочность и ползучесть в условиях статических нагрузок. Известен сплав [1] на основе никеля, химического состава, мас.%:Аl - 2,75-5,25
Cr - 8-10
W - 9-11
Ti - 1,7-2,6
Та - 2,25-3,2
Со - 3-7
С - 0,015-0,05
В - 0-0,01
Zr - 0-0,05
Hf - 0-0,5
Ni - Остальное
Недостатком этого сплава являются высокая плотность, низкая жаростойкость при высоких температурах и неудовлетворительная термоусталость. Изделия из этого сплава, например, рабочие лопатки турбин, имеют низкую коррозионную стойкость. Известен сплав [2] на основе никеля, химического состава мас.%:
Аl - 3,5-4,2
Cr - 9-11
W - 3,8-5,5
Мо - 3,1-4,1
Ti - 3,2-4,0
Со - 14-16
Nb - 1,6-2,1
С - 0,03-0,10
В - 0,005-0,05
Zr - 0,005-0,05
Hf - 0,2-0,8
Mg - 0,001-0,05
Ni - Остальное
при отношении содержания вольфрама к содержанию молибдена 1,0-1,6. Недостатком этого сплава являются ограниченные (1000oС) рабочие температуры. Изделия из этого сплава, детали ГТД, имеют неудовлетворительную надежность и ресурс работы. Известен также жаропрочный никелевый сплав [3] химического состава, мас. %:
Аl - 4,0-6,0
Сr - 7,0-14,0
Мо - 0,7-3,0
W - 9,0-12,0
Ti - 1,0-4,0
Со - 8,0-15,0
С - 0,05-0,2
В - 0,005-0,07
Се - 0,002-0,025
Zr - 0,01-0,10
Nb - 0,5-4,0
Один из элементов группы, включающий Y и Sc, - 0,0013-0,0085
Ni - Остальное,
при условии % Се: % одного элемента из группы, включающей иттрий и скандий = 1,5-3,0. Недостатком этого сплава является неудовлетворительная кратковременная и длительная прочности в интервале температур 900-1050oС, недостаточно высокие рабочие температуры и низкая жаростойкость. Изделия из этого сплава используются для сопловых лопаток авиационных ГТД и для резьбовых захватов высокотемпературных машин для испытания на длительную прочность и ползучесть в условиях статических нагрузок. При этом изделия имеют ограниченный ресурс работы и неудовлетворительный интервал рабочих температур. Наиболее близким аналогом, взятым за прототип, является сплав [4] на основе никеля, имеющий химический состав, мас.%:
Аl - 8,0-9,0
Сr - 5,0-6,0
Мо - 2,5-4,5
W - 2,0-4,0
Ti - 1,2-2,0
С - 0,007-0,04
Hf - 0,4-0,6
Fe - 0,5-1,5
Si - 0,4-1,2
Ni - Остальное
Недостатком этого сплава является, недостаточная жаростойкость при температурах 1100 и 1250oС, неудовлетворительная кратковременная прочность в этом интервале температур и недостаточно высокое сопротивление деформации на сжатие (при осадке) при высоких температурах и нагрузках. Изделия, выполненные из этого сплава, имеют неудовлетворительный ресурс работы. Технической задачей предлагаемого изобретения является создание сплава и изделия из него, обладающих повышенной жаростойкостью при температурах 1100 и 1250oС, кратковременной прочностью в этом интервале температур и повышенным сопротивлением деформации на сжатие (при осадке). Для достижения поставленной технической задачи предлагается сплав на основе никеля, содержащий алюминий, хром, молибден, вольфрам, титан, углерод, который дополнительно содержит цирконий и иттрий при следующем соотношении компонентов, мас.%:
Аl - 8,0-9,0
Cr - 5,0-6,0
Мо - 2,5-3,5
W - 4,5-5,5
Ti - 1,2-2,0
С - 0,12-0,15
Zr - 0,005-0,04
Y - 0,3-0,4
Ni - Остальное
и изделие, выполненное из него. Авторами было установлено, что при заявленных соотношениях компонентов в предлагаемом сплаве на основе никеля и дополнительном введении циркония и иттрия наблюдаются выделения в объеме зерен упрочняющей -фазы, снижающей скорость диффузии при высоких температурах, и создается на границах зерен тормозящий эффект за счет карбидов и интерметаллидной фазы Ni3Al(Y) и улучшающей адгезию оксидной пленки. Все это приводит к повышению жаростойкости сплава при температурах 1100 и 1250oС, кратковременной прочности сплава в этом интервале температур и достижению наибольшего эффекта повышения сопротивления деформации на сжатие (при осадке) при высоких температурах. Примеры осуществления
Шихтовую заготовку из предлагаемого сплава различных составов и сплава-прототипа выплавляли из чистых шихтовых материалов в вакуумной индукционной печи с тиглем из основной футеровки. Содержание легирующих элементов, газов и примесей, таких как сера, фосфор, сурьма, висмут определяли по стандартным методикам. Перед последующими операциями шихтовую заготовку протачивали по поверхности на глубину 1-2 мм для удаления слоя, контактирующего с чугуном, затем разрезали на мерные заготовки весом по 6 кг для последующего переплава. Образцы 16 мм и длиной 75 мм получали методом равноосной кристаллизации. Свойства предлагаемого сплава с различным соотношением компонентов и сплава- прототипа, полученных по одной и той же технологической схеме, приведены в таблице 2. Из таблицы 2 видно, что свойства предлагаемого сплава на основе никеля выше, чем свойства сплава-прототипа. Кратковременная прочность при температуре 1100oС (1100в) у предлагаемого сплава повышается на 12-18% при температуре 1250oС (1250в) - на 35-50%; привес за 100 часов снижается на 45-50%, т. е. жаростойкость при температуре 1100oС повышается на 45-50%, и на 70-75% - при температуре 1250oС; сопротивление деформации на сжатие (степень деформации, , %, при осадке) в диапазоне температур 1100-1200oС повышается в 8-10 раз. Использование предлагаемого сплава на основе никеля увеличивает ресурс работы изделий авиационной техники, например, таких как литые детали камер сгорания газотурбинных двигателей и дожигания топлива и высокотемпературный крепеж в авиационных двигателях, в 10-12 раз и повышает точность определения измерений при использовании этого сплава в виде резьбовых захватов высокотемпературных машин для испытания на длительную прочность и ползучесть в условиях статических нагрузок. Источники информации
1. Патент США 4459160. 2. Патент РФ 2009244. 3. Патент РФ 2070597. 4. Патент РФ 1607422.