способ окрашивания природных и синтетическх ювелирных камней

Классы МПК:A44C17/00 Драгоценные камни и тп
C30B31/02 контактированием с диффузионным материалом в твердом состоянии
C30B33/02 термообработка
Автор(ы):, ,
Патентообладатель(и):Институт экспериментальной минерологии РАН
Приоритеты:
подача заявки:
2002-06-18
публикация патента:

Предназначено для использования в ювелирной промышленности при окрашивании бесцветных топаза, сапфира и кварца в цвета от желтого до яркого желто-оранжевого. Способ включает нанесение на окрашиваемую поверхность слоя железа и последующую термообработку в атмосфере кислорода. Термообработку проводят в три стадии: нагрев, выдержка и охлаждение, причем нагрев и охлаждение ведут со скоростью 0,1-5oС/мин, а выдержку осуществляют при температуре 600-1000oС. Обеспечивается получение устойчивой воспроизводимой окраски в широком спектре цветов от желтого до яркого желто-оранжевого, не требуется дополнительная полировка для дальнейшего использования. 6 з.п. ф-лы.

Формула изобретения

1. Способ окрашивания природных и синтетических ювелирных камней, включающий нанесение на окрашиваемую поверхность слоя железа и последующую термообработку в атмосфере кислорода, отличающийся тем, что термообработку проводят в три стадии: нагрев, выдержка и охлаждение, причем нагрев и охлаждение ведут со скоростью 0,1-5oС/мин, а выдержку осуществляют при температуре 600-1000oС.

2. Способ по п. 1, отличающийся тем, что осаждение пленок железа проводят методом ВЧ-диодного распыления в плазме аргона.

3. Способ по п. 2, отличающийся тем, что осаждение пленок железа проводят до толщины от 0,50 - 300 нм.

4. Способ по п. 1, отличающийся тем, что выдержку при термообработке осуществляют в течение 1-5 ч.

5. Способ по п. 1, отличающийся тем, что выдержку при термообработке топаза проводят при температуре 600-960oС.

6. Способ по п. 1, отличающийся тем, что выдержку при термообработке сапфира проводят при температуре 600-1000oС.

7. Способ по п. 1, отличающийся тем, что выдержку при термообработке кварца проводят при температуре 600-800oС.

Описание изобретения к патенту

Изобретение относится к способам обработки природных и синтетических ювелирных камней, в частности к способам окрашивания бесцветных топаза, сапфира и кварца в цвета от желтого до яркого желто-оранжевого, и может найти применение в ювелирной промышленности, особенно для получения ювелирных камней с наиболее популярной окраской, характерной для топаза под названием "Империал", а кварца -"Цитрин", а также окрашивания розовых сапфиров в красновато-оранжевый цвет, характерный для более ценной разновидности сапфира под названием "падпараджа".

Известен способ окрашивания топаза в различные цвета (от голубого до темно-синего, красновато-коричневый, дымчатый) под воздействием ионизирующего облучения нейтронами, электронами высоких энергий и гамма-лучами, иногда в комбинации с последующей термообработкой при температуре 300-400oС (см. книгу: Kurt. Nasau "Gemstone Enhansement: History, Science and State of the Art", (1994), Butterworth - Heinemann LTD, Oxford, 2nd ed., pp. 32-54, pp. 187-194).

Однако он не позволяет окрасить топаз в наиболее ценный для этого ювелирного камня желтый и оранжевый цвет.

Известен способ окрашивания кристаллов корунда, в том числе в оранжевый цвет, согласно которому на поверхность камня путем напыления наносят железо в металлическом виде с последующей термической обработкой в атмосфере кислорода при температуре 1000-1300oС в течение 0,5-2,0 ч. (Патент RU 2036984, кл. С 30 В 31/02, А 44 С 17/00, опубл. 09.06.95г.).

Однако широкое применение этого способа для окрашивания других ювелирных камней ограничено высокими температурами термической обработки, вызывающими, например, в случае окрашивания топаза, необратимое разложение последнего с выделением фтора и воды и образованием новой тонкокристаллической фазы - муллита. Кроме того, многие камни, например кварц, при обработке при такой высокой температуре подвергаются интенсивной трещиноватости вследствие полиморфных переходов и теряют ювелирные качества.

Предлагаемое изобретение решает задачу разработки технологии окрашивания большого класса природных и синтетических ювелирных камней, техническим результатом которого является получение устойчивой воспроизводимой окраски в широком спектре цветов от желтого до яркого желто-оранжевого для окрашивания бесцветных ювелирных камней, а также разнообразного спектра цветов при обработки цветных ювелирных камней.

Технический результат достигается тем, что в способе окрашивания природных и синтетических ювелирных камней, включающем нанесение на окрашиваемую поверхность слоя железа с последующей термообработкой их в атмосфере кислорода, согласно изобретению термообработку проводят в три стадии: нагрев, выдержка и охлаждение, причем нагрев и охлаждение ведут со скоростью не выше 5oС/мин, а выдержку осуществляют при температуре 600-1000oС.

Выбранный режим термообработки определяется тем, что при температуре ниже 600oС химическая реакция с воспроизводимым устойчивым окрашиванием ювелирных камней в желтый цвет не происходит, а выше 960oС, в случае топаза, на поверхности окрашенного камня появляются непрозрачные вкрапления - результат его термического разложения, а в случае кварца, последний подвергается интенсивной трещиноватости. Ограничение скорости нагрева и охлаждения 5oС/мин обеспечивает сохранность целостности любых камней, особенно тех, которые обладают весьма совершенной спайностью и низкой теплопроводностью.

Для получения гладкой окрашенной поверхности, не требующей последующей полировки, осаждение пленок железа проводят методом ВЧ-диодного распыления в плазме аргона.

Наиболее качественную окраску получают при осаждение пленок железа толщиной от 0,50 до 300 нм.

Наиболее стойкую и воспроизводимую окраску получают при осуществлении выдержки при термообработке в течение 1-5 ч.

Выдержку при термообработке топаза оптимально проводить при температуре 600-960oС.

Выдержку при термообработке сапфира оптимально проводить при температуре 600-1000oС.

Выдержку при термообработке кварца оптимально проводить при температуре 600-800oС.

Интенсивность окраски ювелирных камней можно варьировать путем изменения как толщины напыляемого металла, так и режимов термообработки в заявляемых пределах.

Пример 1.

В качестве образа берут полированную вставку ювелирного изделия, выполненного из топаза. Осаждение пленки железа проводят методом ВЧ-диодного распыления в плазме аргона в интервале температур от 20 до 300oС. Давление Аr составляло ~1 Па (10-2Topp). Толщина пленки, контролируемая с помощью толщиномера, составляет 0,5 нм. После напыления вставку помещают в электропечь и нагревают со скоростью 0,1oС/мин до 600oС в атмосфере кислорода, затем выдерживают при этой температуре 5 ч и охлаждают со скоростью 5oС/мин до комнатной температуры.

Полученный образец имеет равномерную бледно-желтую окраску и не требует дополнительной полировки.

Пример 2.

То же, что в примере 1. Только наносят слой железа толщиной 300 нм, вставку топаза нагревают со скоростью 5oС/мин до 960oС, выдерживают при этой температуре в течение 3 ч и затем охлаждают со скоростью 0,1oС/мин. Полученный образец имеет равномерную яркую оранжевую окраску и не требует дополнительной полировки.

Пример 3.

То же, что в примере 1, но толщина слоя железа составляет 0,4 нм, нагрев ведут со скоростью 0,1oС/мин, стадию выдержки при термообработке проводят при температуре 970oС, а охлаждение осуществляют со скоростью 6oС/мин. В результате получают вставку топаза с многочисленными трещинами с едва заметной желтой окраской.

Пример 4.

То же, что в примере 3, но толщина слоя железа составляет 300 нм, скорость нагрева 6oС/мин, температура выдержки 500oС, скорость охлаждения 0,05oС/мин. В результате получают неокрашенный сильно трещиноватый образец, непригодный для использования в качестве ювелирной вставки.

Пример 5.

То же, что и в примере 2, но толщина напыленного слоя железа составляет 320 нм. В результате получают образец ярко-оранжевого цвета с отчетливой опалесценсией, делающей его малопригодным для использования в ювелирных изделиях.

Пример 6.

Ювелирная вставка из розового сапфира покрывается слоем железа путем ВЧ-диодного распыления в плазме аргона при комнатной температуре. Толщина пленки, контролируемая с помощью толщиномера, составляет 50 нм. После напыления вставку помещают в электропечь и нагревают со скоростью 5oС/мин до 900oС в атмосфере кислорода, затем выдерживают при этой температуре 2 ч и охлаждают со скоростью 3oС/мин до комнатной температуры. Полученный образец имеет равномерную красновато-оранжевую окраску, подобную одной из наиболее ценных разновидностей сапфира-падпараджа.

Пример 7.

То же, что в примере 6, только образец нагревают со скоростью 5oС/мин до 1000oС. Полученный образец имеет равномерную красновато-оранжевую окраску и не требует дополнительной полировки.

Пример 8.

То же, что в примере 7, но нагрев образца проводят со скоростью 0,1oС/мин, выдерживают его при 600oС/мин в течение 3 ч и охлаждают со скоростью 5oС/мин. Полученный образец имеет красновато-оранжевую окраску.

Пример 9.

Ювелирная вставка из бесцветного кварца покрывается путем ВЧ-диодного распыления в плазме аргона при комнатной температуре. Толщина пленки, контролируемая с помощью толщиномера, составляет 50 нм. После напыления вставку помещают в электропечь и нагревают со скоростью 1oС/мин до 600oС/мин в атмосфере кислорода, затем выдерживают при этой температуре 5 ч и охлаждают со скоростью 0,1oС/мин до комнатной температуры. Полученный образец имеет равномерную желтую окраску, подобную окрашенной разновидности природного железосодержащего кварца - цитрина. Образец не требует дополнительной полировки.

Пример 10.

То же что в примере 9, только образец нагревают со скоростью 1,5oС/мин до 800oС в течение 3 ч и охлаждают со скоростью 0,1oС/мин. Полученный образец имеет равномерную ярко-желтую окраску и не требует дополнительной полировки.

Пример 11.

Часовое бесцветное стекло покрывается путем ВЧ-диодного распыления в плазме аргона при комнатной температуре. Толщина пленки, контролируемая с помощью толщиномера, составляет 40 нм. После напыления стекло помещают в электропечь и нагревают со скоростью 2oС/мин до 600oС в атмосфере кислорода, затем выдерживают при этой температуре 2 ч и охлаждают со скоростью 0,3oС/мин до комнатной температуры. Полученный образец имеет равномерную ярко-желтую окраску и не требует повторной полировки.

Таким образом, обработанные предлагаемым способом природные и синтетические ювелирные камни имеют равномерное цветовое покрытие с заданной воспроизводимой интенсивностью цвета и не требуют дополнительной полировки для дальнейшего использования.

Класс A44C17/00 Драгоценные камни и тп

фасетно отшлифованное композитное тело -  патент 2523996 (27.07.2014)
синтетический cvd алмаз -  патент 2516574 (20.05.2014)
способ изготовления фантазийно окрашенного оранжевого монокристаллического cvd-алмаза и полученный продукт -  патент 2497981 (10.11.2013)
способ огранки бриллиантов с калеттой -  патент 2489951 (20.08.2013)
способ огранки бриллиантов с калеттой -  патент 2489070 (10.08.2013)
способ огранки бриллиантов с калеттой -  патент 2486853 (10.07.2013)
способ термической обработки алмазов -  патент 2471542 (10.01.2013)
способ создания оптически проницаемого изображения внутри алмаза, устройство для его осуществления (варианты) и устройство для детектирования указанного изображения -  патент 2465377 (27.10.2012)
способ цветовой огранки бриллианта -  патент 2453256 (20.06.2012)
способ получения алмазов фантазийного желтого и черного цвета -  патент 2434977 (27.11.2011)

Класс C30B31/02 контактированием с диффузионным материалом в твердом состоянии

Класс C30B33/02 термообработка

способ формирования высококачественных моп структур с поликремниевым затвором -  патент 2524941 (10.08.2014)
способ изготовления фантазийно окрашенного оранжевого монокристаллического cvd-алмаза и полученный продукт -  патент 2497981 (10.11.2013)
способ формирования бидоменной структуры в пластинах монокристаллов -  патент 2492283 (10.09.2013)
способ получения кристаллических заготовок твердых растворов галогенидов серебра для оптических элементов -  патент 2486297 (27.06.2013)
лазерная фторидная нанокерамика и способ ее получения -  патент 2484187 (10.06.2013)
способ термической обработки алмазов -  патент 2471542 (10.01.2013)
способ термообработки полуфабрикатов абразивных инструментов на органических термореактивных связках -  патент 2467100 (20.11.2012)
способ обработки алмаза -  патент 2451774 (27.05.2012)
способ получения фторидной нанокерамики -  патент 2436877 (20.12.2011)
способ получения шероховатости на поверхности алмазных зерен -  патент 2429195 (20.09.2011)
Наверх