способ оптоэлектронного измерения тока

Классы МПК:G01R33/032 с помощью магнитооптических приборов, например приборов Фарадея
G01R19/00 Приборы для измерения токов или напряжений или индикации их наличия или направления
Автор(ы):, , , ,
Патентообладатель(и):Марийский государственный университет
Приоритеты:
подача заявки:
2002-06-17
публикация патента:

Изобретение относится к измерительной технике. Технический результат заключается в повышении точности измерения и чувствительности к измеряемому току, расширении диапазона измерений, в использовании при обработке результатов измерения оптической фазовой памяти резонансной среды о воздействии на нее разнесенных во времени лазерных импульсов при наличии продольного магнитного поля. Предлагаемый способ оптоэлектронного измерения электрического тока высоковольтных линий электропередач (ЛЭП) основан на применении оптико-электронного трансформатора тока с внутренней модуляцией света, основанной на нефарадеевском повороте вектора поляризации используемого сигнала первичного или стимулированного фотонного эха. При этом угол поворота зависит от напряженности магнитного поля, несущего информацию об измеряемом токе высоковольтной ЛЭП, от интервала между возбуждающими лазерными импульсами, позволяющего перестраивать диапазоны измерения тока ЛЭП, и не зависит от длины пути в резонансной среде возбуждающих лазерных импульсов и фотонного эха. 1 ил.
Рисунок 1

Формула изобретения

Способ оптоэлектронного измерения тока высоковольтных линий электропередач (ЛЭП), основанный на применении оптико-электронных трансформаторов тока (ОЭТТ), использующих регистрацию угла поворота вектора поляризации линейно поляризованного лазерного излучения при прохождении его через резонансную среду, находящуюся под воздействием продольного магнитного поля, создаваемого током ЛЭП, отличающийся тем, что при использовании физического принципа оптоэлектронного измерения тока применяется внутренняя модуляция света, основанная на нефарадеевском повороте вектора поляризации используемого сигнала первичного или стимулированного фотонного эха, при этом угол поворота вектора поляризации сигнала фотонного эха, формирующегося в резонансной среде под воздействием продольного магнитного поля, зависит от напряженности приложенного магнитного поля, несущего информацию об измеряемом токе ЛЭП, от интервала между возбуждающими импульсами, от типа ветви задействованного квантового перехода, обладающего оптической фазовой памятью об условиях возбуждения фотонного эха и не зависит от длины пути в резонансной среде возбуждающих лазерных импульсов и фотонного эха.

Описание изобретения к патенту

Изобретение относится к измерительной технике и может быть использовано для измерения электрического тока в высоковольтных линиях электропередач (ЛЭП).

Известен способ измерения электрического тока, основанный на регистрации изменения электрического тока во вторичной обмотке одноступенчатого электромагнитного трансформатора тока (Релейная защита распределительных сетей / Я. С. Гельфанд, 2-е изд., перераб. и доп. - М.: Энергоатомиздат, 1987. - 368 с.: ил., с.134).

Недостатком известного способа является отсутствие возможности обеспечить полную электрическую развязку цепи высокого напряжения от цепи вторичной коммутации, а также повышенные требования к изоляции подводящих проводов. Кроме того, данный способ не обеспечивает возможность измерять токи в большом диапазоне с высоким быстродействием, точностью и помехозащищенностью.

Известен способ измерения электрического тока (Трансформаторы тока/ В.В. Афанасьев, Н. М.Адоньев, В.М.Кибель и др. - 2-е изд., перераб. и доп. - Л.: Энергоатомиздат. Ленингр. отд-ние, 1989. - С.346-350), основанный на применении оптико-электронных трансформаторов тока (ОЭТТ) на основе эффекта Фарадея, в которых используется принцип внешней модуляции света. При измерении тока регистрируется угол поворота вектора поляризации линейно поляризованного лазерного излучения при прохождении его через резонансную среду, находящуюся под воздействием продольного магнитного поля, создаваемого током ЛЭП. Величина фарадеевского поворота вектора поляризации зависит от напряженности приложенного магнитного поля и длины пути света в резонансной среде от задействованного квантового перехода.

Недостатками известного способа являются: узкий диапазон измеряемых токов, низкая чувствительность при малых значениях токов, зависимость угла поворота вектора поляризации света от длины пути лазерного излучения в магнитном поле.

Задачей настоящего изобретения является повышение точности измерения и чувствительности прибора к измеряемому току, расширение диапазона измерений за счет автоматически или вручную перестраиваемого интервала измеряемого тока и использования при обработке результатов измерения оптической фазовой памяти резонансной среды о воздействии на нее разнесенных во времени лазерных импульсов при наличии продольного (ориентированного вдоль распространения лазерных импульсов) магнитного поля.

Эта задача решается путем использования физического принципа оптоэлектронного измерения трансформаторного тока, в котором применяется внутренняя модуляция света, основанного на использовании свойств нефарадеевского поворота вектора поляризации используемого сигнала первичного или стимулированного фотонного эха способ оптоэлектронного измерения тока, патент № 2223512, формирующегося в резонансной среде под воздействием продольного магнитного поля. Нефарадеевский угол поворота вектора поляризации фотонного эха зависит от напряженности магнитного поля Н, несущей информацию об измеряемом токе ЛЭП, от интервала между возбуждающими импульсами, позволяющего перестраивать диапазон измерения тока ЛЭП, и от типа ветви задействованного квантового перехода, обладающего оптической фазовой памятью об условиях возбуждения фотонного эха. Этот угол не зависит от длины пути в резонансоной среде возбуждающих лазерных импульсов и фотонного эха.

Предлагаемый способ поясняется чертежом, на котором изображена схема измерения электрического тока в ЛЭП. Имеется источник последовательности разнесенных во времени лазерных импульсов 1 с задаваемыми интенсивностями и временными параметрами (длительностями возбуждающих лазерных импульсов и временными интервалами между ними), регистратор интенсивности оптических импульсов (РИОИ) 2, токопровод 3, кювета с резонансной средой 4, соленоид 5, горизонтально ориентированная поляризационная призма 6, вертикально ориентированная поляризационная призма 7.

Измерение тока производится следующим образом. Токопровод 3 подсоединяется к соленоиду 5. Внутри соленоида устанавливается кювета 4 с резонансным газом. Источник лазерных импульсов 1 вырабатывает импульсы света, разделенные временными интервалами, которые проходят через горизонтально ориентированную поляризационную призму 6 и поступают в кювету 4. После выхода из кюветы лазерные импульсы ослабляются, проходя через поляризационную призму 7, ортогонально ориентированную к их вектору поляризации. В то время, когда по токопроводу течет ток, в соленоиде 5 наводится продольное магнитное поле. Это поле воздействует на процесс формирования фотонного эха в резонансной среде при воздействии на нее последовательности возбуждающих лазерных импульсов, вызывая эффект нефарадеевского поворота вектора поляризации эхо-сигнала.

Экспериментально установлено, что если ток ЛЭП не равен нулю, в соленоиде имеется продольное магнитное поле напряженностью Н. При этом происходит поворот вектора поляризации только эхо-сигнала. Имеющийся при этом фарадеевский поворот вектора поляризации оптических импульсов на 3-4 порядка меньше нефарадеевского поворота эхо-сигнала.

Чувствительность регистратора 2 не позволяет зарегистрировать фарадеевский поворот вектора поляризации оптических импульсов, но обеспечивает регистрацию нефарадеевского поворота вектора поляризации эхо-сигнала.

Для измерения тока ЛЭП шкалу регистратора необходимо протарировать в единицах измерения тока.

Класс G01R33/032 с помощью магнитооптических приборов, например приборов Фарадея

чувствительный элемент волоконно-оптического интерферометрического датчика электрического тока и магнитного поля -  патент 2437107 (20.12.2011)
волоконно-оптическое измерительное устройство (варианты) -  патент 2429498 (20.09.2011)
способ измерения магнитных полей по электронно-оптическим муаровым картинам -  патент 2354988 (10.05.2009)
магнитооптический датчик тока на основе фотонного эха -  патент 2284529 (27.09.2006)
устройства и способ исследования магнитных свойств объектов -  патент 2281557 (10.08.2006)
способ измерения переменного электрического тока и устройство для его осуществления -  патент 2281516 (10.08.2006)
волоконно-оптическое устройство для измерения импульсных токов -  патент 2262709 (20.10.2005)
волоконно-оптический датчик магнитного поля -  патент 2259571 (27.08.2005)
волоконно-оптический датчик магнитного поля -  патент 2255345 (27.06.2005)
устройство для измерения больших токов -  патент 2208798 (20.07.2003)

Класс G01R19/00 Приборы для измерения токов или напряжений или индикации их наличия или направления

датчик постоянного тока с развязкой -  патент 2528270 (10.09.2014)
сенсорное устройство для тока подшипника с преобразователем энергии -  патент 2526864 (27.08.2014)
электронный датчик тока и напряжения на высоком потенциале -  патент 2525581 (20.08.2014)
устройство для гальванического разделения сигналов -  патент 2522913 (20.07.2014)
способ обнаружения несанкционированного запараллеливания фидеров распределительных подстанций на стороне потребителя и устройство для его осуществления -  патент 2520163 (20.06.2014)
устройство для измерения активного тока -  патент 2518846 (10.06.2014)
способ измерения установившегося после включения питания значения постоянного электрического сигнала на выходе измерительного преобразователя -  патент 2518631 (10.06.2014)
устройство для измерения тока и напряжения в высоковольтной сети -  патент 2516034 (20.05.2014)
устройство для измерения тока -  патент 2515176 (10.05.2014)
измерительный шунт для импульсных токов -  патент 2514147 (27.04.2014)
Наверх