питательная среда для ускоренного определения лекарственной устойчивости микобактерий туберкулеза
Классы МПК: | A61K35/74 бактерии C12N1/00 Микроорганизмы, например простейшие; их композиции; способы размножения, содержания или консервирования микроорганизмов или их композиций; способы приготовления или выделения композиций, содержащих микроорганизмы; питательные среды |
Автор(ы): | Маничева О.А., Вишневский Б.И., Мякотина Е.Н. |
Патентообладатель(и): | Государственное учреждение "Санкт-Петербургский научно- исследовательский институт фтизиопульмонологии" |
Приоритеты: |
подача заявки:
2001-07-30 публикация патента:
10.04.2004 |
Изобретение относится к области медицины, а именно к фтизиобактериологии. Сущность изобретения: разработана питательная среда для микобактерий туберкулеза (МБТ) для определения их лекарственной устойчивости на основе модифицированной синтетической среды Сотона, которая дополнительно содержит 0,35% питательного агара и 25% лошадиной сыворотки. Технический результат: среда позволяет получить визуально видимый рост МБТ в 2,1-2,8 раза быстрее (на 3-5-е сутки), чем на известной среде. Предлагаемая среда может быть использована в практике фтизиобактериологических лабораторий для ускоренного получения данных о лекарственной устойчивости клинических штаммов МБТ к изониазиду, стрептомицину, рифампицину. 2 табл.
Формула изобретения
Питательная среда для ускоренного определения лекарственной устойчивости микобактерий туберкулеза, содержащая солевой состав модифицированной питательной среды Сотона, отличающаяся тем, что она содержит дополнительно 0,35% питательного агара и 25% лошадиной сыворотки при следующем составе компонентов:Полужидкая основа:Калия двухосновного фосфорнокислого 0,5 гМагнезии сернокислой 0,05 гЖелеза лимоннокислого аммиачного 0,05 гНатрия лимоннокислого 2,0 гL-аспарагина 4,0 гГлицерина 60 млПитательного агара 3,5 гДистиллированной воды До 1 лЛошадиной сыворотки 100 мл/300 мл полужидкой основыОписание изобретения к патенту
Изобретение относится к медицине, а именно к области фтизиобактериологии, и может быть использовано для определения лекарственной устойчивости микобактерий туберкулеза.Разработка методов и сред для ускоренного определения лекарственной устойчивости является важной задачей современной фтизиобактериологии, особенно в условиях подъема лекарственной устойчивости, наблюдающегося в последние годы [1, 2]. Общеизвестно, что чем ранее начата адекватная химиотерапия, тем быстрее наступает излечение больного, поэтому клиницисты очень заинтересованы в быстром получении данных о лекарственной устойчивости МБТ, выделенных от пациента.Учет результатов определения лекарственной устойчивости стандартным непрямым методом абсолютных концентраций на плотной яичной среде Левенштейна - Йенсена производится на 14-21-й день после посева культуры МБТ [3, 4]. Ускоренный метод определения лекарственной устойчивости на плотной яичной среде Попеску по нитратредуктазной активности применим только для Mycobacterium tuberculosis, но не для M.bovis, не имеющего данного фермента [5].На жидких средах МБТ растут быстрее. Так, бульон Миддлбрука используется для определения лекарственной устойчивости в таких системах, как ВАСТЕС, МВ-ВАСТ, BBL-MGIT. Индикация роста МБТ в этих системах осуществляется радио-, коло- и флюорометрическими методами на 3-10-е сутки после посева культуры [6, 7, 8]. Перечисленные системы, использующие жидкую среду, очень дороги и доступны немногим хорошо оснащенным референс-лабораториям. Так, стоимость 1 флакона со средой МВ-ВАСТ превышает 100 руб., системы BBL-MGIT - около 1 у.е., система ВАСТЕС требует дорогого аппаратурного обслуживания и небезопасна радиологически.Полужидкие среды используются в практике некоторых фтизиобактериологических лабораторий только для выделения измененных форм МБТ - L-форм [9].В целях ускоренного определения лекарственной устойчивости штаммов МБТ перспективно использование полужидких сред с добавлением оптимальных количеств ростовых и питательных факторов и противотуберкулезных препаратов.Прототипом предлагаемой среды является жидкая синтетическая среда Сотона [3], с помощью которой определяют лекарственную устойчивость. Но в практике фтизиобактериологии она, как и другие жидкие среды [3], используется в крайне редких случаях из-за неудобства применения или сложности и трудоемкости считывания результата: 1) визуально - по росту поверхностной пленки на 10-14-21-й день, при этом теряется преимущество среды в скорости роста; 2) по мазку из осадка - процедура, увеличивающая опасность внутрилабораторного заражения и требующая длительного времени.Таким образом, преимущество предлагаемой среды в сравнении с наиболее близкими: 1) быстрота получения результатов - 3-7 суток; 2) дешевизна; 3) доступность любой фтизиобактериологической лаборатории, так как необходимые для нее ингредиенты постоянно используются в повседневной практике этих лабораторий; 4) безопасность - не требуются дополнительные манипуляции, такие, как высев, микроскопия для верификации роста; 5) простота считывания результата, которое осуществляется визуально.Задачей предлагаемого изобретения является разработка питательной среды для ускоренного определения лекарственной устойчивости штаммов МБТ к трем основным препаратам - стрептомицину, изониазаду, рифампицину.Задача решается за счет того, что в жидкую модифицированную среду Сотона добавляют 0,35% питательного агара и 25% лошадиной сыворотки.Приготовление питательной среды для определения лекарственной устойчивости МБТ.Основу среды представляет модифицированная жидкая синтетическая среда Сотона [10], в которую добавляют питательный агар и после стерилизации - лошадиную сыворотку. Конечная концентрация агар-агара в предлагаемой среде около 0,08%, то есть среда близка по консистенции к жидкой, что наряду с оптимальной концентрацией вносимой лошадиной сыворотки обусловливает быстрый рост МБТ, а агар-агар не дает инокуляту опускаться на дно, повышая локальную концентрацию микроорганизмов. Это обеспечивает быструю визуализацию роста - начальные его признаки на 3-5-е сутки, отчетливые - на 5-7-е сутки в зависимости от особенностей штамма.Состав питательной среды, г:Калий двухосновный фосфорнокислый 0,5Магнезия сернокислая 0,05Железо лимоннокислое аммиачное 0,05Натрий лимоннокислый 2,0L-аспарагин 4,0Глицерин, мл 60Питательный агар 3,5Дистиллированная вода До 1 лСмесь подогревают до полного растворения солей, разливают в колбы по 300 мл и стерилизуют в автоклаве при 1 атм (120°С) 30 мин. В остывшую полужидкую основу асептически добавляют 100 мл лошадиной сыворотки (к 300 мл основы, что составляет 25%). Затем полужидкую среду разливают в 4 колбы по 100 мл: 1 - контроль, без противотуберкулезных препаратов; 2 - с 1 мл стрептомицина в концентрации 1000 мкг/мл; 3 - с 1 мл изониазида в концентрации 100 мкг/мл; 4 - с 1 мл рифампицина в концентрации 2000 мкг/мл. Разведения препаратов производят стандартно [3, 4]. Конечные концентрации химиопрепаратов равны: стрептомицина - 10 мкг/мл, изониазида - 1 мкг/мл, рифампицина - 20 мкг/мл, то есть данные концентрации идентичны тем, которые используются в стандартном непрямом методе абсолютных концентраций. Затем среду с противотуберкулезными препаратами и без них разливают асептически по 4 мл. Пробирки должны быть закрыты резиновыми пробками без лунок.Определение лекарственной устойчивости МВТ.Готовят суспензию исследуемого штамма МБТ в физиологическом растворе по стандарту мутности 5 ед., разводят ее в 10 раз и вносят в пробирки с полужидкой средой в объеме 0,2 мл. Инокулят засевают поверхностно по стенке пробирки без перемешивания и встряхивания. Посевы инкубируют при 37°С в течение 7 дней. Учет результатов производят визуально. МБТ растут в верхней части среды в виде взвеси или облачка очень мелких и более крупных крошковидных колоний. При чувствительности культуры МБТ к препарату роста нет, среда остается равномерно прозрачной. При резистентности штамма МБТ к противотуберкулезным препаратам результат можно учитывать при появлении первых признаков роста, то есть на 3-5-е сутки, при чувствительности - не ранее 7 суток (срок, при котором наблюдается наибольший процент совпадений результатов, полученных с помощью данной среды и стандартной среды Левенштейна - Йенсена).Испытание предлагаемой среды проведено на 242 клинических штаммах МБТ, выделенных из патологического материала больных туберкулезом органов дыхания и его внелегочными формами. Лекарственную устойчивость исследовали параллельно на предлагаемой среде и стандартным методом на среде Левенштейна - Йенсена.Результаты определения скорости роста МБТ на предлагаемой среде по сравнению со средой Левенштейна - Йенсена представлены в табл. 1. Как видно из приведенных данных, срок начального и отчетливого роста, определяемого визуально, на полужидкой среде в 2,1 и 2,8 раза меньше такового на среде Левенштейна - Йенсена, что делает предлагаемую среду перспективной для ускоренного определения лекарственной устойчивости. В табл. 2 представлены данные исследования лекарственной устойчивости с помощью предлагаемой среды и стандартным методом на среде Левенштейна - Йенсена. Статистически достоверных различий между ними нет.Таким образом, проведенные исследования показали, что использование предлагаемой полужидкой среды в 2,1-2,8 раза сокращает сроки роста МВТ в сравнении со средой Левенштейна - Йенсена, используемой для определения лекарственной устойчивости стандартным методом, и дает высокий процент сходимости результатов. Поэтому для ускоренного определения устойчивости МБТ к основным противотуберкулезным препаратам - стрептомицину, изониазиду, рифампицину целесообразно использовать предлагаемую полужидкую среду.Источники информации1. Вишневский Б.И., Вишневская Е.Б., Платонова М.В. Лекарственная устойчивость микробактерий туберкулеза при различных локализациях заболевания// Мат. VII съезда Всерос. общ. эпидем., микробиол. и паразитол. - М., 1997, т.2, с.301 и 302.2. Дорожкова И.Р., Попов С.А., Медведева И.Н. Мониторинг лекарственной устойчивости возбудителя туберкулеза в России за 1979-1998 гг.// Пробл. туб. - 2000, №5, с.19-22.3. Ященко Т.Н., Мечева И.С. Руководство по лабораторным исследованиям при туберкулезе. - М.: Медицина, 1973.4. Приказ №558 от 8.06.1978. Об унификации микробиологических методов исследования при туберкулезе. - М., 1978.5. Патент RU 2099425. Способ определения лекарственной устойчивости микобактерий туберкулеза //Голышевская В.И., Корнеев А.А., Аникин В.А. и др.6. Siddiqi S.H., Libonati J.P. Middlbrook G. Evaluation of a rapid radiometric method for drug susceptibility testing of Mycobacterium tuberculosis //J.Clin. Med. - 1981, 13, №5, p.908-912.7. Севастьянова Э.В., Голышевская В.И., Сафонова С.Г. и др. Определение лекарственной устойчивости М. tuberculosis традиционными и современными методами //Тез.докл. IV съезда НМА фтиз. - М. - Йошкар-Ола, 1999, с.218.8. Иртуганова О.А., Смирнова Н.С., Слогоцкая С.В. и др. Бактериологические методы определения лекарственной устойчивости микобактерий туберкулеза // Туберкулез сегодня: проблемы и перспективы. - М., 2000, с.73-75.9. L-формы микобактерий туберкулеза/ Под ред. З.Н.Кочемасова. - М.: Медицина, 1980.10. Щеголева Р.А. Модификация жидкой питательной среды Сотона для выращивания микобактерий туберкулеза. Лаб. дело. - 1989, №5, с.78 и 79.Класс C12N1/00 Микроорганизмы, например простейшие; их композиции; способы размножения, содержания или консервирования микроорганизмов или их композиций; способы приготовления или выделения композиций, содержащих микроорганизмы; питательные среды