магнитогидродинамический способ преобразования тепловой энергии в электрическую замкнутого цикла
Классы МПК: | H02K44/08 магнитогидродинамические (МГД) генераторы |
Автор(ы): | Славин В.С., Финников К.А., Миловидова Т.А. |
Патентообладатель(и): | Красноярский государственный технический университет |
Приоритеты: |
подача заявки:
2002-03-29 публикация патента:
10.04.2004 |
Изобретение относится к производству электрической энергии и может быть использовано в электросиловых установках, осуществляющих преобразование тепловой энергии в электрическую. Способ включает разгон потока инертного газа, создание в потоке перед входом в канал МГД-генератора с помощью импульсных пучков электронов высокой энергии и сильноточных электрических разрядов периодических по времени электропроводных слоев, перемещаемых газовым потоком в поперечном магнитном поле. При этом реализуется режим самоподдержания электропроводных слоев в канале МГД-генератора за счет энергии потока и генерирования полезной мощности. В электропроводных плазменных слоях создают состояние “замороженной ионизации”, для чего используют электронные пучки только для начальной ионизации, а окончательную ионизацию осуществляют с помощью импульсного сильноточного разряда с характерным временем разряда не более 210-6 c. Сильноточный разряд однородно повышает концентрацию электронов в предварительно ионизованном электропроводном слое, при этом напряжение разряда подбирают так, чтобы концентрация электронов к моменту выключения тока разряда составила (0,81,5)1015 см-3. Технический результат - создание условий, при которых в неоднородном газоплазменном потоке в плазме будет сохраняться явление “замороженной ионизации”. 1 ил.
Рисунок 1
Формула изобретения
Магнитогидродинамический способ преобразования тепловой энергии в электрическую замкнутого цикла, включающий разгон потока инертного газа, создание в потоке перед входом в канал МГД-генератора с помощью импульсных пучков электронов высокой энергии периодических по времени электропроводных слоев, перемещение и самоподдержание энергии электропроводных слоев в канале МГД-генератора за счет энергии потока, снятие полезной мощности, отличающийся тем, что для создания электропроводных плазменных слоев, находящихся в состоянии "замороженной ионизации", используют электронные пучки только для начальной ионизации, а окончательную ионизацию осуществляют с помощью импульсного сильноточного разряда с характерным временем разряда не более 210-6c, которым однородно повышают концентрацию электронов в предварительно ионизованном электропроводном слое, при этом напряжение разряда подбирают так, чтобы концентрация электронов к моменту выключения тока разряда составила (0,81,5)1015 см-3.Описание изобретения к патенту
Изобретение относится к производству электрической энергии и может быть использовано в электросиловых установках, осуществляющих преобразование тепловой энергии в электрическую. Особую важность это изобретение может обрести при создании мощной космической электростанции, где замкнутость цикла для рабочего тела установки имеет принципиальное значение.Известен способ [1] преобразования тепловой энергии в МГД-генераторе замкнутого цикла, использующий в качестве рабочего тела поток инертного газа без присадки щелочного металла, включающий разгон потока инертного газа, создание в потоке перед входом в канал МГД-генератора периодических по времени слоев с повышенной электропроводностью. перемещение и самоподдержание указанных слоев в канале МГД-генератора за счет энергии потока, снятие полезной мощности. Этот способ предполагает периодическое использование системы импульсного электрического разряда с характерным временем импульса 10-4 с, в течение которого концентрация электронов в электропроводном плазменном слое должна вырасти до значений 1014 см-3.При такой "медленной" ионизации электронный газ успевает передать значительную часть своей тепловой энергии атомарному газу, в результате чего газ в объеме электропроводного слоя нагревается и повышает давление. Область повышенного давления начинает газодинамическое расширение, при котором плотность газа падает. В областях с пониженной плотностью (т.е. там, где повышенная концентрация электронов привела к мощному выделению тепла) будет повышена электронная температура, что еще дополнительно усилит ионизацию и выделение тепла. Фактически произойдет развитие ионизационной неустойчивости, из-за которой разряд становится неоднородным, в нем развиваются ионизационная турбулентность, и эффективная электропроводность при этом резко падает.Известен способ [2] преобразования тепловой энергии в МГД-генераторе замкнутого цикла, включающий разгон потока инертного газа, создание в потоке перед входом в канал МГД-генератора периодических по времени слоев с повышенной электропроводностью, перемещение и самоподдержание указанных слоев в канале МГД-генератора за счет энергии потока, снятие полезной мощности. В этом способе для создания слоев с повышенной электропроводностью предлагается использование импульсных пучков электронов высокой энергии для формирования неравновесно ионизованных плазменных сгустков в потоке инертного газа. При этом мощность электронных пучков определяется условиемne>nсаха(Tion),где ne - концентрация электронов в электропроводных сгустках;nсаха - равновесная концентрация электронов, определяемая из уравнения Саха;Tion - пороговая температура электронов, с которой начинается лавинообразная ионизация (к примеру для неона Tion 18000К).При выполнении условия 4000К<T<T, где Те - температура электронов в плазменных слоях, в инертных газах происходит значительное снижение скорости рекомбинации в тройных столкновениях. Плазма оказывается в состоянии "замороженной ионизации", при котором сохраняется высокая концентрация электронов (ne~1014 см-3), что с одной стороны обеспечивает эффективный магнитогидродинамический процесс в канале МГД-генератора, а с другой в такой плазме электропроводность зависит от электронной температуры как ~Т-12e, что препятствует развитию в плазме диссипативных неустойчивостей, таких как ионизационная и перегревная.Недостатком способа является то, что достижение плотности электронов 1014 см-3 только за счет ионизации электронным пучком представляется проблематичной задачей (как правило, существующие устройства формируют электронные пучки, позволяющие получить в потоке газа ne~1010 см-3). Кроме того, ионизация электронным пучком оставляет холодным газ в объеме неравновесного плазменного сгустка, что должно привести к образованию в этом объеме молекулярных ионов. В свою очередь молекулярные ионы быстро рекомбинируют в парных столкновениях с электронами, концентрация свободных электронов при этом резко снижается и эффект "замороженной ионизации" исчезает.В основу изобретения положена задача создания условий, при которых в неоднородном газоплазменном потоке в плазме будет сохраняться явление "замороженной ионизации".Поставленная задача достигается тем, что в магнитогидродинамическом способе преобразования тепловой энергии в электрическую замкнутого цикла, включающем разгон потока инертного газа, создание в потоке перед входом в канал МГД-генератора с помощью импульсных пучков электронов высокой энергии периодических по времени электропроводных слоев, перемещение и самоподдержание электропроводных слоев в канале МГД-генератора за счет энергии потока, снятие полезной мощности, согласно данному изобретению, для создания электропроводных плазменных слоев, находящихся в состоянии "замороженной ионизации", используют электронные пучки только для начальной ионизации, а окончательную ионизацию осуществляют с помощью импульсного сильноточного разряда с характерным временем разряда не более 210-6 с, которым однородно повышают концентрацию электронов в предварительно ионизованном электропроводном слое, при этом напряжение разряда подбирают так, чтобы концентрация электронов к моменту выключения тока разряда составила (0,81,5)1015 см-3."Быстрая" ионизация в сильноточном разряде с характерным временем действия не более 2•10-6 c (условие установлено в ходе численного эксперимента на математической модели) резко повышает концентрацию электронов, которые не успевают обменяться энергией с нейтральным газом, поэтому процесс развивается на фоне постоянных газовых температур и давлений. В этом случае, в областях с повышенной концентрацией электронов из-за преобладания столкновений электрон - ион над столкновениями электрон -нейтральный атом снижается длина свободного пробега электрона и, соответственно, снижается электронная температура. Таким образом, в "быстром" сильноточном разряде в отличие от "медленного" разряда температура электронов будет снижаться в областях с повышенной ионизацией, что подавит ионизационную неустойчивость и сделает разряд однородным во всей области, предварительно ионизованной электронным пучком. После выключения электрического поля рекомбинация в тройных столкновениях, пропорциональная n3е, происходит достаточно быстро (с характерным временем 10-4 с) до уровня концентрации ne 1014 см-3, после чего скорость рекомбинации резко снижается. Поток газа вносит плазменный сгусток в магнитное поле МГД-генератора, где за счет индуцированного электрического поля в плазме устанавливается температура электронов на уровне 104 K. Реализация режима с "замороженной ионизацией" в данном случае оказалась возможной благодаря избыточной ионизации (0,81015 см-3 1,51015 cм-3) плазмы в сильноточном разряде. Последующая рекомбинация до уровня ne 1014 см-3 приводит к выделению энергии затраченной на ионизацию в виде тепла, которое повышает температуру тяжелых частиц (нейтральных атомов и ионов) в плазме до 3500К-4000К. Границы этого температурного диапазона определились в ходе численного моделирования процесса рекомбинации плазмы, для которой уровень ионизации задавался из интервала (0,81,5)1015 см-3. При температуре 3500К - 4000К молекулярные ионы не образуются, и процесс рекомбинации может осуществляться только медленным механизмом трехчастичного столкновения. Если по завершению импульсного сильноточного разряда концентрация электронов окажется меньше чем 0,81015 см-3, то соответственно температура тяжелых частиц в плазме будет ниже 3500К и в плазме будут образовываться молекулярные ионы. При концентрации выше 1,51015 см-3 температура будет превышать 4000К, что не препятствует режиму "замороженной ионизации", но этот режим требует неоправданных затрат энергии.На чертеже показано устройство для осуществления предложенного способа.Устройство содержит сверхзвуковое сопло 1, систему 2 импульсной инжекции электронного пучка, систему 3 импульсного сильноточного разряда, электроды 4 канала МГД-генератора, обмотку 5 электромагнита, электропроводные слои плазмы 6, канал 7 МГД-генератора, систему 8 питания нагрузки, нагрузку 9.Способ осуществляется следующим образом.Нагретый инертный газ (например, неон), температура которого может выбираться из диапазона 1500К<Т<3000К, разгоняют в сверхзвуковом сопле 1. Перед входом в канал МГД-генератора периодически с помощью системы 2 инжектируют пучок электронов высокой энергии, в результате чего в газовом потоке возникает локальная область с начальной концентрацией электронов ~1010 см-3. Затем, включением системы 3 импульсного сильноточного разряда, из области начальной ионизации формируют плазменный сгусток с концентрацией электронов 1015 см -3. Далее газовый поток вносит в МГД-канал 7 электропроводный плазменный сгусток 6, в котором из-за снижения концентрации электронов до 1014 см-3 повышается температура тяжелых частиц до 3500К-4000К. Здесь плазма замыкается на электроды 4. Индуцированный движением плазмы в поперечном магнитном поле, создаваемом обмоткой 5 электромагнита, электрический ток преобразуют системой 8 питания нагрузки. Полезная мощность выделяется в нагрузке 9. Этим же электрическим током, протекающим по плазме, поддерживают температуру электронов на уровне ~104 K и таким образом, выполняют условия поддержания плазмы в состоянии "замороженной ионизации".Для численного исследования процесса инициирования плазменного сгустка в потоке инертного газа была создана расчетная модель, в которой совместно с уравнениями магнитной газодинамики решались уравнения многоуровневой ионизационной кинетики, включавшие следующие элементарные процессы: столкновение возбужденных атомов с электронами, радиационные переходы, дезактивирующие столкновения с атомами, образование молекулярных ионов, процессы рекомбинации в двойном столкновении молекулярного иона и электрона и тройном столкновении атомарного иона и двух электронов. Константа скорости реакции возбуждения из основного состояния определялась в результате численного решения кинетического уравнения Больцмана с учетом неравновесной заселенности первого возбужденного состояния. Кинетическая модель тестировалась путем сопоставления расчетных результатов с экспериментальными данными по значениям коэффициентов Таунсенда и с экспериментальными данными по свойствам контрагированного разряда в неоне. Факт хорошего совпадения расчетных и экспериментальных результатов говорит об адекватности модели реальному процессу.Численное моделирование генераторного процесса, реализующего описанный способ, показало, что в потоке неона с параметрами торможения Г=2000К, Р=1 МПа может быть осуществлен процесс преобразования тепловой энергии в электрическую с показателями эффективности: степень преобразования энтальпии - 39%, адиабатический КПД - 78%.Установка с такими параметрами позволит создать для наземной энергетики МГД - электростанцию, включающую парогазовую установку, с общим КПД порядка 60%, а в случае космического применения совместно с солнечными концентраторами излучения в качестве теплового источника бортовую энергоустановку замкнутого цикла с уровнем удельной мощности порядка 600 Вт/кг, что примерно в двадцать раз выше, чем у используемых в настоящее время панелей солнечных элементов.Источники информации1. Slavin V.S., Zelinsky N.I., Lazareva N.N., Persianov P.G., "Disk Closed Cycle MHD Generator with Faraday Type Channel Working on Pure Noble Gas" (Дисковый МГД-генератор замкнутого цикла с каналом фарадеевского типа, работающий на чистом инертном газе), статья в сборнике трудов Международной конференции "11-th Intern. Conf. on MHD Electrical Power Generation", Vol. 4, pp. 1190-1198., Академия наук Китая. - Пекин, 1992.2. Славин B.C., Данилов В.В. Магнитогидродинамический способ преобразования тепловой энергии в электрическую замкнутого цикла, Патент РФ №2110131, 1998 г.Класс H02K44/08 магнитогидродинамические (МГД) генераторы