способ получения переносного объема с магнитным вакуумом
Классы МПК: | H01F27/36 электрические или магнитные экраны или щиты H01L39/16 приборы с переключением из сверхпроводящего состояния в нормальное состояние или наоборот |
Автор(ы): | Буев А.Р. (RU), Игумнов В.Н. (RU), Иванов В.В. (RU) |
Патентообладатель(и): | Марийский государственный университет (RU) |
Приоритеты: |
подача заявки:
2002-10-23 публикация патента:
27.06.2004 |
Изобретение относится к магнитометрии и может быть использовано при создании объемов с магнитным вакуумом, т.е. магнитным полем, много меньшим, чем поле Земли. Техническим результатом изобретения является повышение качества магнитного ВТСП-экрана при уменьшении его внутреннего поля путем исключения замороженного магнитного поля. Технический результат достигается тем, что ВТСП-экран с криостатом помещают в магнитный вакуум, например, в камеру стационарной гелиевой установки. Затем ВТСП-экран охлаждают хладагентом, после чего вместе с криостатом извлекают из камеры. 1 ил.
Рисунок 1
Формула изобретения
Способ получения переносного объема с магнитным вакуумом, при котором объем экранируется от магнитного поля с помощью ВТСП-экрана, отличающийся тем, что ВТСП-экран в нормальном состоянии вместе с соответствующим криостатом вначале помещают в магнитный вакуум, затем охлаждают его соответствующим хладагентом, после чего криостат с экраном извлекают из магнитного вакуума и используют по необходимости.Описание изобретения к патенту
Изобретение относится к магнитометрии и может быть использовано при создании объемов с магнитным вакуумом, т. е. полем, много меньшим, чем поле Земли.Известны способы получения магнитного вакуума, заключающиеся в постепенном переводе в сверхпроводящее состояние магнитных экранов, вставленных один в другой, с помощью гелиевого криостата [1, с.81-86]. В силу своей сложности, установка, реализующая способ, стационарна и связана с питающей электросетью, что ограничивает возможности данного метода. Наиболее близким техническим решением является способ экранирования объема с помощью охлаждения в жидком азоте керамического высокотемпературного (ВТСП) экрана в виде цилиндра, стакана и т. д., при котором в экране наводятся сверхпроводящие экранирующие токи [2]. В этом случае установка мобильна и автономна. Однако при охлаждении и переходе в сверхпроводящее (СП) состояние стенки экрана в силу его керамического, гранулярного состава захватывают пронизывающее их магнитное поле, в том числе и поле Земли, что не позволяет достичь высокого магнитного вакуума, т. е. снижает его качество.Техническим результатом изобретения является повышение качества магнитного вакуума в ВТСП-экране путем исключения захваченного им магнитного поля.Указанный технический результат достигается тем, что в известном способе ВТСП-экран, находящийся в криостате, вначале помещают в магнитный вакуум, созданный, например, с помощью стационарной установки со сверхпроводящими экранами для получения слабых магнитных полей [1], затем охлаждают его жидким азотом, после чего извлекают вместе с криостатом. При этом в ВТСП-экране сохраняется магнитный вакуум, равный магнитному вакууму стационарной установки. Сопоставительный анализ заявленного решения с прототипом показывает, что заявленный способ отличается тем, что вначале ВТСП-экран помещают в магнитный вакуум, затем там же охлаждают жидким азотом, после чего извлекают из магнитного вакуума. Таким образом, заявленный способ соответствует критерию “новизна”.Сравнение заявленного технического решения с другими техническими решениями показывает, что способы частичного экранирования ВТСП-экрана перед его криостатированием известны [2], однако совокупность существенных признаков, состоящая из помещения в магнитный вакуум, последующего охлаждения там же и удаления ВТСП-экрана с криостатом из магнитного вакуума в совокупности с ограничительными признаками позволит обнаружить у заявляемого способа иные, в отличие от известных, свойства, к числу которых можно отнести:- достижение в ВТСП-экране высокой степени магнитного вакуума, доступного только в стационарных гелиевых установках со сверхпроводящими экранами;- возможность задания степени магнитного вакуума;- возможность последующего извлечения магнитного вакуума уже из ВТСП-экрана;- возможность транспортирования магнитного вакуума вместе с ВТСП-экраном и азотным криостатом.Таким образом, иные, в отличие от известных технических решений свойства, присущие предложенному способу, доказывают наличие существенных отличий, направленных на достижение технического результата.На чертеже представлено поперечное сечение ВТСП-экрана 1 в криостате 2 с жидким азотом 3.Предложенный способ получения переносного объема с магнитным вакуумом реализован следующим образом.Из ВТСП- порошка YBa2Cu3O7 прессуют и спекают экран в виде стакана (внутренний диаметр - 40 мм, высота - 250 мм, толщина стенки - 3 мм). Экран в криостате помещают в камеру магнитного вакуума стационарной установки получения сверхслабых магнитных полей с температурой более 100К. Установка содержит 3 сверхпроводящих экрана, вставленных друг в друга, которые последовательно, начиная с наружного, переводятся в СП-состояние с помощью жидкого гелия. После суммарного ослабления магнитное поле имеет величину порядка 10-6-10-7 мТ, т.е. в 105-106 раз меньше магнитного поля Земли. В данном поле при температуре более 100К ВТСП-экран находится в нормальном состоянии. Затем в криостат с экраном наливают жидкий азот, и экран переходит в сверхпроводящее состояние, фиксируя внутри пронизывающее его слабое магнитное поле, т. е. магнитный вакуум. После извлечения ВТСП-экрана с криостатом из камеры его используют как переносной автономный объем с магнитным вакуумом.В контрольном случае обычного охлаждения ВТСП-экрана в азотном криостате он способен захватить магнитное поле величиной от 0,1 мТ (поле Земли) и выше.Использование предложенного способа получения переносного объема с магнитным вакуумом обеспечивает следующие преимущества:- создание автономного переносного объема с магнитным вакуумом;- возможность получения магнитного вакуума нужной глубины (величина остаточного поля);- возможность последующего извлечения магнитного вакуума из ВТСП-экрана.Источники информации1. Бондаренко С.И., Шеремет В.И. Применение сверхпроводимости в магнитных измерениях - Л.: Энергоатомиздат. Ленингр. отд-ние, 1982. - 132с.2. Лаппо И.С. и др. Технология и свойства магнитных ВТСП экранов // Получение, свойства и анализ высокотемпературных сверхпроводящих материалов и изделий - Свердловск: Уральское отделение Академии Наук СССР Институт металлургии, 1991. - с.94-97.Класс H01F27/36 электрические или магнитные экраны или щиты
Класс H01L39/16 приборы с переключением из сверхпроводящего состояния в нормальное состояние или наоборот