способ получения оксида мышьяка особой чистоты

Классы МПК:C01G28/00 Соединения мышьяка
C01B13/14 способы получения оксидов или гидроксидов вообще
Автор(ы):, , , ,
Патентообладатель(и):Демахин Анатолий Григорьевич (RU),
Севостьянов Владимир Петрович (RU),
Косенко Сергей Иванович (RU)
Приоритеты:
подача заявки:
2001-12-13
публикация патента:

Изобретение относится к способу получения веществ особой степени чистоты, а конкретно к способу получения оксида мышьяка (III). Способ получения оксида мышьяка особой чистоты состоит из операции возгонки продукта и его конденсации в вакууме, причем процессы проводят в трех зонах с температурным градиентом для каждой: - зона сублимации исходного оксида мышьяка при температуре 240...270способ получения оксида мышьяка особой чистоты, патент № 2232719С, - зона конденсации целевого оксида мышьяка при температуре 160...180способ получения оксида мышьяка особой чистоты, патент № 2232719С, - зона конденсации летучих примесей при температуре 120...140способ получения оксида мышьяка особой чистоты, патент № 2232719С. Изобретение позволяет получать оксид мышьяка (III) со степенью чистоты более 99,995 мас.%. 1 табл.
Рисунок 1

Формула изобретения

Способ получения оксида мышьяка особой чистоты, включающий возгонку исходного продукта, содержащего сопутствующие загрязняющие примеси, и конденсацию целевого продукта в вакууме при температурном нагреве, отличающийся тем, что возгонку исходного продукта осуществляют при температуре 240-270способ получения оксида мышьяка особой чистоты, патент № 2232719С, а конденсацию проводят в двух зонах с температурным градиентом для каждой: зона конденсации целевого оксида мышьяка - при температуре 160-180способ получения оксида мышьяка особой чистоты, патент № 2232719С, - зона конденсации летучих примесей - при температуре 120-140способ получения оксида мышьяка особой чистоты, патент № 2232719С.

Описание изобретения к патенту

Изобретение относится к способу получения веществ особой степени чистоты, а конкретно к способу получения оксида мышьяка (III).

Проблема получения веществ особой чистоты возникла давно, но особенно резкое возрастание требований к чистоте ряда веществ было обусловлено развитием электронной техники, которая потребовала материалы с содержанием примесей на уровне 10-4...10-7 мас.%.

Современные требования к чистоте оксида мышьяка (III), находящего применение для получения различных соединений мышьяка, в микроэлектронике, волоконной оптике и других областях техники составляет уровень способ получения оксида мышьяка особой чистоты, патент № 223271999,995 мас.%.

Известны способы получения оксида мышьяка (III) чистоты способ получения оксида мышьяка особой чистоты, патент № 223271999,995 мас.% методами термической сублимации оксида и гидролизом очищенных фракционной перегонкой трихлорида или триалкоксида мышьяка с последующей кристаллизацией из водных растворов оксида мышьяка (III) [Рцхиладзе В.Г. Мышьяк. - М.: Металлургия. - 1969. - 190 с.; Федоров В.А., Пашинкин А.С., Ефремов А.А. Гринберг Е.Е. Физико-химические основы получения высокочистого мышьяка из сульфидных руд. /Высокочистые вещества, 1991, №5, с.7-30].

Методы термической сублимации оксида мышьяка по характеру операций наиболее близки к заявляемому способу. Так, в работе [Ивашенцев Я.И., Никульчикова O.K., Отмахова З.И. Термическая дистилляция трехокиси мышьяка. /Труды Томского Государственного университета. Вопросы химии, 1964, т.170, с.150] рассмотрено рафинирование оксида мышьяка (III) сублимацией. В основу этого метода положено различие упругости паров оксида мышьяка и окислов элементов примесей. Опыты проводили в кварцевой ампуле (реакторе), помещенной в электрическую печь при Т=300...500способ получения оксида мышьяка особой чистоты, патент № 2232719С. В качестве исходного материала брали оксид мышьяка (III), содержащий оксиды сурьмы, алюминия, железа, кремния, марганца и других элементов. Степень очистки контролировали спектральным анализом. В работе показано, что применение сублимации приводит к очистке оксида мышьяка (III) от всех элементов примесей, за исключением сурьмы. С целью снижения содержания примеси оксида сурьмы в состав исходного оксида мышьяка вводили 5...20 мас.% пиролюзита (перекиси марганца). Этим, по мнению авторов, достигалось увеличение производительности процесса и дополнительная очистка возгонов оксида мышьяка от сурьмы за счет перевода ее в пятивалентное состояние. Описанный метод не лишен ряда недостатков. Во-первых, известно, что на практике пиролюзит применяют для перевода As3+ в As5+. Это означает, что в условиях сублимации смесей оксида мышьяка (III) с перекисью марганца возможно образование нелетучего As2O5, вследствие чего неизбежны потери основного вещества - возгона оксида мышьяка (III). Во-вторых, введение пиролюзита в состав исходной шихты (оксид мышьяка) замедлит процессы возгонки, так как из законов массопереноса при теплопередаче от поверхности обогреваемой стенки к возгоняемому веществу скорость сублимации будет падать при добавке постороннего вещества пропорционально его концентрации вследствие уменьшения поверхности испарения основного вещества. И, в-третьих, применение температурного интервала Т=300...500способ получения оксида мышьяка особой чистоты, патент № 2232719С для возгонки оксида мышьяка (III) нецелесообразно по причине того, что при Т>270способ получения оксида мышьяка особой чистоты, патент № 2232719С кристаллический оксид мышьяка переходит в аморфную, стеклообразную форму (полимерной природы). При этом скорость процесса возгонки резко падает, так как теплота дополнительно затрачивается на процессы деполимеризации (разрыв связей -As-O-As-) стеклообразного оксида мышьяка.

Для очистки от примесей серы, селена, теллура и получения оксида мышьяка (III) высокой степени чистоты предлагают [Pat. №2944885 USA/ Metod of Purifyihg Arsenic and Antimony // Guenter F. Wolf, Little Silver (USA), 1960] проводить сублимацию исходного оксида мышьяка в глубоком вакууме при постепенном нагреве исходной шихты (оксида мышьяка) до Т=220способ получения оксида мышьяка особой чистоты, патент № 2232719С с разделением отдельных компонентов в реакторе (десублиматоре) по зонам конденсации (десублимации). Зону, содержащую очищенный оксид мышьяка (III), отделяют и подвергают многократной фракционной возгонке для дополнительной очистки продукта. В результате многократной фракционной сублимации оксид мышьяка (III) очищают от элементов примесей до величины способ получения оксида мышьяка особой чистоты, патент № 223271910-6 мас.%.

Описанный способ по совокупности технических и технологических признаков является наиболее близким к предлагаемому изобретению и выбран в качестве прототипа.

Недостатком вышеописанного способа является, то что зона конденсации продуктов возгона не имеет температурного градиента, что приводит к низкому выходу оксида мышьяка и необходимости проведения пятикратной возгонки для получения целевого продукта с высокой степенью чистоты.

В предлагаемом настоящем способе получения оксида мышьяка (III) особой чистоты возгонку исходного оксида и его конденсацию проводят в условиях вакуума и, в отличие от известного способа по прототипу, в предложенном техническом решении используют температурный градиент по зоне реактора (десублиматора). Этим достигается как повышение выхода продукта при высоких скоростях проведения процесса, так и эффективное разделение оксида мышьяка (III) и сопутствующих примесей, что позволяет уменьшить количество повторных операций возгонки с целью достижения высокой степени чистоты Аs2О3.

Предлагаемый способ характеризуется новой совокупностью технологических параметров, установленных экспериментально. Реактор по протяженности процесса имеет температурный градиент, разделенный по трем зонам. В зоне возгонки исходного оксида мышьяка (шихты) поддерживают температуру 240...270способ получения оксида мышьяка особой чистоты, патент № 2232719С, в зоне конденсации (десублимации) целевого вещества 160...180способ получения оксида мышьяка особой чистоты, патент № 2232719С, в зоне конденсации летучих примесей способ получения оксида мышьяка особой чистоты, патент № 2232719140способ получения оксида мышьяка особой чистоты, патент № 2232719С и процесс проводят при остаточном давлении 3...10 мм рт.ст. Нижняя граница температуры сублимации обусловлена тем, что при температуре <240способ получения оксида мышьяка особой чистоты, патент № 2232719С в вакууме 3...10 мм рт.ст. не достигается необходимое для возгонки давление паров оксида мышьяка, что замедляет скорость проведения процесса. Верхний интервал температуры в 270способ получения оксида мышьяка особой чистоты, патент № 2232719С обусловлен тем, что выше температуры в 270способ получения оксида мышьяка особой чистоты, патент № 2232719С кристаллический оксид мышьяка (III) переходит в стеклообразный, что приводит к существенному замедлению процесса сублимации. Остаточное давление 3...10 мм рт.ст. является оптимальным, так как при более высоком вакууме (<3 мм рт.ст.) наблюдается унос оксида мышьяка из зоны конденсации реактора, а при остаточном давлении более 10 мм рт.ст. не достигается необходимое для возгонки давление паров оксида мышьяка (III), что замедляет скорость проведения процесса.

Температура конденсации (десублимации) целевого вещества 160...180способ получения оксида мышьяка особой чистоты, патент № 2232719С определена экспериментально и обусловлена следующими причинами. При температуре в зоне конденсации менее 160способ получения оксида мышьяка особой чистоты, патент № 2232719С, в условиях проведения процесса сублимации оксида мышьяка, описанного выше, наблюдается десублимация вместе с целевым продуктом сопутствующих более летучих примесей, что не приводит к глубокой очистке Аs2O3. При температуре более 180способ получения оксида мышьяка особой чистоты, патент № 2232719С эффективность десублимационного процесса значительно понижается из-за того, что оксид мышьяка (III) имеет при этой температуре и вакууме 3...10 мм рт.ст. значительное давление паров и вследствие этого зона конденсации сдвигается в сторону более низких температур.

Пример. Исходную шихту состава 94,3 мас.% оксида мышьяка (III), остальное сопутствующие примеси - элементы и их оксиды (Cd, Fe, Zn, V, Mn, Pb, Bi, Ni, и др.) в количестве 1540 г загружают в реактор, помещаемый в горизонтальную трубчатую электропечь, и включают обогрев. После выхода на заданный температурный режим: температура в зоне сублимации Т=260способ получения оксида мышьяка особой чистоты, патент № 2232719С; в зоне конденсации оксида мышьяка 170способ получения оксида мышьяка особой чистоты, патент № 2232719С; в зоне конденсации примесей Тспособ получения оксида мышьяка особой чистоты, патент № 2232719140способ получения оксида мышьяка особой чистоты, патент № 2232719С, подключают вакуум. Процесс получения оксида мышьяка (III) особой чистоты проводят непрерывно в течение 4,5 ч в вакууме при остаточном давлении 5 мм рт.ст. По истечении заданного времени отключают вакуум и обогрев. Полученный оксид мышьяка (III) выгружают из зоны конденсации реактора и подвергают анализу. По данным анализа (атомно-эмиссионная спектроскопия и рентгено-флуоресцентная спектрометрия) чистота полученного Аs2О3 более 99,995 мас.%. Выход As2O3 составляет 1440 г (96,4%).

При аналогичных загрузках и времени проведения процесса в таблице приведены составы исходного сырья (по содержанию оксида мышьяка) и условия получения оксида мышьяка (III) особой чистоты по предлагаемому способу, характеристика полученного продукта, технологические параметры проведения процесса и условия, выходящие за граничные.

Класс C01G28/00 Соединения мышьяка

способ переработки арсенита натрия гидролизного в товарную продукцию -  патент 2513846 (20.04.2014)
способ переработки отходов цветной металлургии, содержащих мышьяк и серу -  патент 2486135 (27.06.2013)
способ очистки сточной воды от мышьяка -  патент 2482074 (20.05.2013)
способ получения арсената натрия -  патент 2443632 (27.02.2012)
способ переработки реакционных масс, образующихся при щелочном гидролизе люизита, в технические продукты -  патент 2396099 (10.08.2010)
способ получения особо чистого мышьяка -  патент 2394769 (20.07.2010)
способ получения мышьяковой кислоты -  патент 2375309 (10.12.2009)
способ получения элементного мышьяка из водных и водно-органических растворов мышьяксодержащих соединений -  патент 2371391 (27.10.2009)
способ восстановления соединений мышьяка (v), содержащихся в продуктах щелочной детоксикации люизита, в соединения мышьяка (iii) -  патент 2359915 (27.06.2009)
способ получения гексафторарсената лития -  патент 2344081 (20.01.2009)

Класс C01B13/14 способы получения оксидов или гидроксидов вообще

способ получения композиционных материалов на основе диоксида кремния -  патент 2528667 (20.09.2014)
способ получения наноразмерных оксидов металлов из металлоорганических прекурсоров -  патент 2526552 (27.08.2014)
композиция на основе сложных оксидов циркония, фосфора и кальция для получения покрытия -  патент 2502667 (27.12.2013)
способ производства металлических продуктов -  патент 2478566 (10.04.2013)
способ непрерывного получения металлооксидного катализатора и аппарат для его осуществления -  патент 2477653 (20.03.2013)
способ получения чистого нанодисперсного порошка диоксида титана -  патент 2470855 (27.12.2012)
способ получения нановискерных структур оксида меди -  патент 2464224 (20.10.2012)
способ получения нанокристаллических порошков оксидов металлов -  патент 2425803 (10.08.2011)
наночастицы гетерокристаллического минерала для применения в качестве лекарственного средства -  патент 2423134 (10.07.2011)
способ получения нанодисперсных оксидов металлов -  патент 2407705 (27.12.2010)
Наверх