способ химико-термической обработки

Классы МПК:C23C8/00 Диффузия в твердом состоянии только неметаллических элементов в металлическую поверхность; химическая обработка поверхности металлического материала путем взаимодействия поверхности с реакционным газом, причем продукты реакции поверхностного материала остаются в покрытии, например конверсионные покрытия, пассивирование металлов
C23C10/00 Диффузия в твердом состоянии только металлов или кремния в металлическую поверхность
C23C12/00 Диффузия в твердом состоянии по крайней мере одного неметаллического элемента, иного, чем кремний, и по крайней мере одного металлического элемента или кремния в поверхность металлического материала
Автор(ы):, , , ,
Патентообладатель(и):ОАО "Тульский проектно-конструкторский технологический институт машиностроения" (RU)
Приоритеты:
подача заявки:
2002-05-06
публикация патента:

Изобретение относится к области химико-термической обработки заготовок, деталей и инструмента, может быть использовано в машиностроении. Данный способ включает помещение в печь твердого измельченного диэлектрического вещества, нагрев печи, продувание через твердое измельченное вещество газовоздушной смеси, размещение в печи обрабатываемой детали, причем в процессе обработки детали на деталь подают электрическое напряжение, при этом обработку осуществляют совместно с термоциклированием и циклическим обеднением концентраций рабочих газов, а помещение в печь твердого измельченного вещества, продувание через него газовоздушной смеси и размещение в печи обрабатываемой детали осуществляют после нагрева печи. Техническим результатом изобретения является ускорение процесса адсорбции, снижение расхода электроэнергии и используемых в газовоздушной смеси газов, повышение экологической безопасности.

Формула изобретения

Способ химико-термической обработки, включающий помещение в печь твердого измельченного диэлектрического вещества, нагрев печи, продувание через твердое измельченное вещество газовоздушной смеси, размещение в печи обрабатываемой детали, причем в процессе обработки детали на деталь подают электрическое напряжение, при этом обработку осуществляют совместно с термоциклированием и циклическим обеднением концентраций рабочих газов, а помещение в печь твердого измельченного вещества, продувание через него газовоздушной смеси и размещение в печи обрабатываемой детали осуществляют после нагрева печи.

Описание изобретения к патенту

Изобретение относится к области химико-термической обработки заготовок, деталей и инструмента, может быть использовано в машиностроении.

Известен способ химико-термической обработки, описанный в статье: Бобок А.Н., Шавелкин А.Д., Павлова А.В., Барк В.М., Карповская С.Л. Экономическая эффективность и адаптация к условиям рынка и спроса на выпускаемую продукцию при применении универсальной экологически чистой технологии и оборудования ТО и ХТО в кипящем слое специального катализатора // Известия Тульск. гос. ун-та. - Сер. “Материаловедение”. - Вып.1. - 2000. - С. 184-197, при котором в печь помещают твердое измельченное вещество, продувают через него газовоздушную смесь, нагревают печь, размещают в печи обрабатываемые детали и осуществляют нагрев печи с деталями и продувание газовоздушной смеси в течение всего времени обработки деталей.

Однако данный способ предполагает высокий расход используемых в газовоздушной смеси газов и высокий расход электрической энергии, так как по данном способу не предусмотрена возможность создания электрического напряжения на поверхности обрабатываемой детали, по полярности обратного заряду ионизированного осаждаемого (адсорбируемого) газа. Большой расход газов и электрической энергии увеличивает отрицательную экологическую нагрузку.

Наиболее близким к предлагаемому является способ химико-термической обработки, описанный в патенте Российской Федерации №2132403 "Способ химико-термической обработки", 6 С 23 С 8/00, 10/00, опубл. 27.06.99. Бюл. №18, при котором в печь помещают твердое измельченное вещество, продувают через него газовоздушную смесь, нагревают печь, размещают в печи обрабатываемые детали и осуществляют нагрев печи с деталями и продувание газовоздушной смеси в течение всего времени обработки деталей.

Однако данный способ предполагает высокий расход используемых в газовоздушной смеси газов и высокий расход электрической энергии, так как по данному способу не предусмотрена возможность создания электрического напряжения на поверхности обрабатываемой детали, по полярности обратного заряду ионизированного осаждаемого (адсорбируемого) газа. Большой расход газов и электрической энергии увеличивает отрицательную экологическую нагрузку.

Предлагаемый способ химико-термической обработки характеризуется следующими признаками: помещение в печь твердого измельченного диэлектрического вещества, нагрев печи, продувание через твердое измельченное вещество газовоздушной смеси, размещение в печи обрабатываемой детали, причем в процессе обработки детали на деталь подают электрическое напряжение, при этом обработку осуществляют совместно с термоциклированием и циклическим обеднением концентраций рабочих газов, а помещение в печь твердого измельченного вещества, продувание через него газовоздушной смеси и размещение в печи обрабатываемой детали осуществляют после нагрева печи.

Технический результат - снижение расхода, используемых в газовоздушной смеси газов за счет периодического уменьшения их удельного веса в газовоздушной смеси газов за счет создания электростатического или электродинамического поля вокруг обрабатываемой детали, которое, воздействуя на ионизированный рабочий газ, направляет его на поверхность детали, тем самым увеличивая приповерхностную концентрацию, ускоряет процесс адсорбции, что ведет к уменьшению расхода газа и электроэнергии, повышению экологической безопасности за счет сокращения сброса в атмосферу газов и тепла.

Способ осуществляется следующим образом.

В прогретую печь засыпается твердое измельченное диэлектрическое вещество (специальный катализатор), через которое осуществляется продувание газовоздушной смеси, помещают обрабатываемую деталь. Состав катализатора и газовоздушной смеси выбирают в зависимости от вида химико-термической обработки, например, при помощи материалов, приведенных в статье: Бобок А.Н., Шавелкин А.Д., Павлова А.В., Барк В.М., Карповская С.Л. Экономическая эффективность и адаптация к условиям рынка и спроса на выпускаемую продукцию при применении универсальной экологически чистой технологии и оборудования ТО и ХТО в кипящем слое специального катализатора // Известия Тульск. гос. ун-та. - Сер. “Материаловедение”. - Вып.1. - 2000. - С. 184-197. На обрабатываемую деталь подают высокое напряжение, выдерживают деталь нужное время при заданных режимах, температуре, расходе газовоздушной смеси и напряжении. Данную обработку возможно осуществлять совместно с термоциклированием и циклическим обеднением концентраций рабочих газов. Операция осуществляется до получения заданной глубины обработанного слоя поверхности детали.

Пример конкретного применения.

Предлагаемый способ был реализован при проведении цементации детали, изготовленной из стали 20Х в установке кипящего слоя “Корунд-300”. Сертификат РОСС RU. МЕ 71.В00083.

В тигель печи в качестве твердого измельченного диэлектрического материала для создания кипящего слоя был засыпан катализатор марки НАМ. Через газораспределительную решетку внизу тигля подавалась газовоздушная смесь, состоящая из 75% воздуха и 25% пропан-бутана. Печь была прогрета до 950способ химико-термической обработки, патент № 2235145С. Деталь на подвеске керамического электроизолятора помещали в рабочее пространство печи и, учитывая, что основной рабочий газ - оксид углерода СО имеет положительную валентность, на деталь подводили минусовый импульсный разряд напряжением 65000 В и ток 2,8 мА. Положительный полюс источника питания соединяется с тиглем печи и заземляется.

Длительность разряда определялась емкостью конденсаторной батареи. В ходе проведения химико-термической операции удалось снизить расход пропан-бутановой смеси в 1,2 раза и уменьшить расход электроэнергии примерно на 2% без ухудшения качества термообработки детали по сравнению с применением известного способа.

Класс C23C8/00 Диффузия в твердом состоянии только неметаллических элементов в металлическую поверхность; химическая обработка поверхности металлического материала путем взаимодействия поверхности с реакционным газом, причем продукты реакции поверхностного материала остаются в покрытии, например конверсионные покрытия, пассивирование металлов

способ ионно-плазменного азотирования длинномерной стальной детали -  патент 2528537 (20.09.2014)
способ обработки деталей для кухонной утвари -  патент 2526639 (27.08.2014)
способ изготовления деталей машин с получением субмикро- и наноструктурированного состояния диффузионного приповерхностного слоя при азотировании -  патент 2524892 (10.08.2014)
способ упрочнения электроосажденных железохромистых покрытий нитроцементацией -  патент 2524294 (27.07.2014)
способ внутреннего азотирования ферритной коррозионно-стойкой стали -  патент 2522922 (20.07.2014)
способ формирования микроструктурированного слоя нитрида титана -  патент 2522919 (20.07.2014)
способ азотирования деталей машин с получением наноструктурированного приповерхностного слоя и состав слоя -  патент 2522872 (20.07.2014)
способ циклического газового азотирования штампов из сталей для горячего деформирования -  патент 2519356 (10.06.2014)
науглероженный стальной элемент и способ его получения -  патент 2518840 (10.06.2014)
устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде -  патент 2518047 (10.06.2014)

Класс C23C10/00 Диффузия в твердом состоянии только металлов или кремния в металлическую поверхность

способ термодиффузионного цинкования изделий из ферромагнитных материалов -  патент 2527593 (10.09.2014)
способ получения защитных покрытий -  патент 2527234 (27.08.2014)
устройство для диффузионной металлизации в среде легкоплавких жидкометаллических растворов -  патент 2521187 (27.06.2014)
устройство для нанесения антикоррозионного покрытия на металлические изделия путем термодиффузионного цинкования -  патент 2515868 (20.05.2014)
горячепреcсованный элемент и способ его получения -  патент 2509827 (20.03.2014)
способ обработки твердосплавного инструмента -  патент 2509173 (10.03.2014)
способ нанесения термодиффузионного цинкового покрытия и муфта с термодиффузионным цинковым покрытием -  патент 2507300 (20.02.2014)
пластина из железа или сплава железа и способ ее изготовления -  патент 2505617 (27.01.2014)
способ нанесения антикоррозионного покрытия на металлические изделия путем термодиффузионного цинкования -  патент 2500833 (10.12.2013)
устройство для термодиффузионного цинкования металлических изделий -  патент 2498180 (10.11.2013)

Класс C23C12/00 Диффузия в твердом состоянии по крайней мере одного неметаллического элемента, иного, чем кремний, и по крайней мере одного металлического элемента или кремния в поверхность металлического материала

способ нанесения металлокерамического покрытия на стальную деталь с использованием электрической дуги косвенного действия -  патент 2510427 (27.03.2014)
способ нанесения защитного покрытия на изделия из стали или титана -  патент 2492281 (10.09.2013)
способ нанесения керамического покрытия на детали из чугунов и сталей -  патент 2482215 (20.05.2013)
способ нанесения покрытия для защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля -  патент 2471887 (10.01.2013)
способ нанесения шликера металлокерамического покрытия на внутреннюю поверхность статора турбины -  патент 2433208 (10.11.2011)
способ нанесения покрытия -  патент 2413785 (10.03.2011)
способ борохромирования стальных изделий -  патент 2391441 (10.06.2010)
способ боросилицирования стальных изделий -  патент 2391440 (10.06.2010)
способ борохромирования стальных изделий -  патент 2391439 (10.06.2010)
способ термодиффузионного упрочнения стальных деталей -  патент 2384649 (20.03.2010)
Наверх