способ определения стойкостных характеристик упроченных поверхностей деталей и инструмента
Классы МПК: | G01N3/56 исследование сопротивления износу или истиранию |
Автор(ы): | Цеханов Ю.А. (RU), Повстин Д.В. (RU), Заволокин О.А. (RU), Якубов Чингиз Ферзиевич (UA), Кривошеев С.В. (RU) |
Патентообладатель(и): | Государственное образовательное учереждение Воронежская государственная технологическая академия (RU) |
Приоритеты: |
подача заявки:
2003-07-01 публикация патента:
10.09.2004 |
Изобретение относится к испытательной технике. Сущность: контртело с упрочненной испытуемой поверхностью размещают на установочном звене, приводят его в контакт с цилиндрическим образцом заготовки, имеющим продольные пазы, с эксплуатационным усилием поджима, вращают образец. Контактные нагрузки имеют циклический характер. Нагрузку меняют ступенчато, после чего стойкостную характеристику поверхности деталей и инструмента определяют по приведенной зависимости. Технический результат: увеличение точности и снижения трудоемкости определения стойкостных характеристик. 3 ил.
Формула изобретения
Способ определения стойкостных характеристик упрочненных поверхностей деталей и инструмента, заключающийся в том, что контртело с упрочненной испытуемой поверхностью размещают на установочном звене, приводят его в контакт с цилиндрическим образцом заготовки, имеющим продольные пазы, с эксплуатационным усилием поджима, вращают образец и определяют стойкостную характеристику поверхности деталей и инструмента, отличающийся тем, что контактные нагрузки имеют циклический характер, при этом нагрузку меняют ступенчато, после чего стойкостную характеристику поверхности деталей и инструмента определяют исходя из зависимости
N=(a(q))L2+(b(q))L+(c(q)),
где q - контактная нагрузка на каждой ступени нагружения;
L, N - путь трения и число циклов нагружения, которые может выдержать упрочненная поверхность до разрушения;
a(q), b(q), c(q) - aппроксимационные коэффициенты для данного типа поверхности.
Описание изобретения к патенту
Изобретение относится к испытательной технике и может быть использовано при стойкостных испытаниях упрочненных поверхностей деталей и инструмента, работающих в условиях циклического нагружения.
Известен способ определение стойкостных характеристик для деформирующихся поверхностей, находящихся в действии закона контактных циклических нагрузок, заключающийся в том, что контртело из материала инструмента размещают на установочном звене, приводят его в контакт с цилиндрическим образцом заготовки с эксплуатационным усилием поджима, вращают образец, перемещают контртело в направлении оси образца с эксплуатационными скоростями и определяют стойкостную характеристику инструмента, используют образец с винтовыми и продольными пазами, в качестве установочного элемента используют разнесенные опоры путем изменения расстояния, между которыми регулируют эпюру напряженного состояния контртела в цикле, а контакт контртела с образцом осуществляют по выступу последнего [АС 1795347, опубл. 15.02.93. Бюл. №6].
Недостатком указанного способа является то, что он применим для определения стойкостных характеристик деформирующихся поверхностей, находящихся в действии закона контактных циклический нагрузок, но не свойственно для упрочненных поверхностей, работающих при контактных, циклических нагрузках без пластической деформации, а также сложность обработки полученных данных и их применение в инженерной практике.
Технической задачей изобретения является увеличение точности и снижение трудоемкости определения стойкостных характеристик.
Поставленная задача достигается тем, что в способе определения стойкостных характеристик упрочненных поверхностей деталей и инструмента, заключающемся в том, что контртело с упрочненной испытуемой поверхностью размещают на установочном звене, приводят его в контакт с цилиндрическим образцом заготовки, имеющей продольные пазы, с эксплуатационным усилием поджима, вращают образец и определяют стойкостную характеристику упрочненной поверхности деталей и инструмента, т.е. количество циклов при заданной нагрузке, которое выдерживает поверхность до предельного износа, проявляющееся в виде появления микротрещин, выхода из поля допуска посадок, потери начальной геометрии деталей и инструмента, новым является то, что контактные нагрузки имеют циклический характер, при этом нагрузку меняют ступенчато, после чего стойкостную характеристику поверхности деталей и инструмента определяют, исходя из зависимости
N=(а(q))L2+(b(q))L+(с(q)),
где q - контактная нагрузка на каждой ступени нагружения;
L, N - путь трения и число циклов нагружения, которые может выдержать упрочненная поверхность до разрушения;
а(q), b(q), с(q) - аппроксимационные коэффициенты для данного типа поверхности.
На фиг.1 показана схема реализации заявляемого способа.
Способ реализуется следующим образом. Используется цилиндрический образец 1 с продольными пазами 2. Образец вращается со скоростью , контртело 3 с упрочненной испытуемой поверхностью размещается в установочном звене 4. Контртело 3 прижимается к образцу с усилием Р, которое приравнивается к эксплуатационному давлению на поверхность детали.
Испытания каждого образца осуществляют до тех пор, пока его упрочненная рабочая поверхность не потеряет свои эксплуатационные качества, которые зависят от рода упрочнения и от условий работы реальной детали и инструмента, может проявляться в виде недопустимо большого износа: появления микротрещин, выход из поля допуска посадок, потеря начальной геометрии деталей и инструмента.
По полученным экспериментальным данным при разных нагрузках для испытуемой поверхности строится график функции F(N,L)=0 (фиг.3). После чего данные функции аппроксимируется в виде N=aL2+bL+с, а аппроксимационные коэффициенты вводятся в виде зависимости а(q), b(q), с(q).
Цель испытаний заключается в определении стойкости испытуемой поверхности при циклическом нагружении, которая зависит от числа циклов нагружения (N), причем под одним циклом мы понимаем период нагружения контртела при его взаимодействии с поверхностью цилиндрического образца между двумя соседними продольными пазами, таким образом контртело за один цикл пройдет путь L’,
и суммарного пути трения (L), т.е. является функцией двух этих параметров F(N,L)=0. Поэтому данной функции в системе координат (N,L) соответствует некоторая предельная кривая фиг.2.
При усилии прижима q2>q1 кривая располагается ниже. При q1>q3 кривая располагается выше.
Выше этой предельной кривой эксплуатация поверхностного слоя в максимально тяжелых условиях работы невозможна. Ниже этой кривой расположена область надежной работы поверхностного слоя.
Таким образом, были получены кривые для покрытия TiN+ZrN (7.5%) толщиной 7 мкм, напыленного на заготовку из стали 45. Построены стойкостные диаграммы при различных контактных давлениях. Также варьировалась и длина пути трения один цикл деформирования L. Для этих хрупких покрытий в качестве критерия износа принималось появление микротрещины.
Результаты представлены на фиг.3. Видно, что при различных контактных давлениях кривые имеют качественно одинаковый характер. Чем больше суммарный путь трения, т.е. L - велико, тем меньше число циклов работы выдерживают испытуемая поверхность. При малом суммарном пути трения, т.е. L - мало, предельное число циклов нагружения сильно зависит от уровня контактного давления, а при отсутствии циклики путь трения также меняется при изменении контактного давления от 4000 м при q=1.6 ГПа до 9000 м при q=0.7 ГПа. Аппроксимируя кривые F(N,L)=0 (фиг.3) получим следующие уравнения:
при
q=0,7 ГПа N1=1,5610-4L2-1,9016L+3900;
q=1,2 ГПа N2=2,2510-4L2-1,902L+3300;
q=1,6 ГПа N3=5,1210-4L2-2,6L+2200.
Чтобы в целом определить стойкость поверхности детали и инструмента, работающего в условиях циклического нагружения при разных нагрузках, необходимо ввести зависимость аппроксимационных коэффициентов от нагрузки
а=6,4410-4q2-1,085·10-3q+6·10-4;
b=-1,938q2+3,6814q-3,52896;
с=-1722,3q3+2072,3q+3293,4.
В итоге получили аналитическую зависимость стойкостной характеристики при циклическом нагружении покрытия TiN+ZrN (7.5%) толщиной 7 мкм, напыленного на заготовку из стали 45.
N=(6,44·10-4q2-1,08510-3q+610-4)L2+
(-1,938q2+3,6814q-3,52896)L+
(-1722,3q2+2072,3q+3293,4).
Полученная характеристика наиболее точна и оптимальна для контактных нагрузок из диапазона q=0.5-2 ГПа. Данный способ можно использовать в инженерной практике при эксплуатации восстановленных или упрочненных поверхностей деталей и инструмента.
Класс G01N3/56 исследование сопротивления износу или истиранию