способ получения пар высокочистых стекол системы as-s для сердцевины и оболочки одномодовых и малоапертурных многомодовых световодов
Классы МПК: | C03C3/32 составы для изготовления стекла, не содержащие оксидов, например двойные или тройные галогенные соединения, сульфиды или нитриды германия, селена или теллура C03B37/023 волокон, состоящих из различных сортов стекла, например волоконной оптики |
Автор(ы): | Снопатин Г.Е. (RU), Чурбанов М.Ф. (RU), Девятых Г.Г. (RU), Дианов Е.М. (RU), Плотниченко В.Г. (RU), Матвеева М.Ю. (RU) |
Патентообладатель(и): | Институт химии высокочистых веществ РАН (RU) |
Приоритеты: |
подача заявки:
2003-11-12 публикация патента:
27.09.2004 |
Изобретение относится к волоконной оптике и касается разработки способа получения сульфидно-мышьяковых стекол для сердцевины и оболочки одномодовых и малоапертурных многомодовых световодов, используемых в оптике и приборах для ближнего и среднего ИК-диапазона. Способ включает синтез путем сплавления высокочистых мышьяка и серы при 700-800С в вакуумированном двухкамерном реакторе из высокочистого кварцевого стекла. Реактор предварительно отжигают в атмосфере азота при температуре не ниже 900С, полученный расплав разливают в камеры. Затем образуют расплав для сердцевины и расплав для оболочки, для чего часть расплава перегоняют из одной камеры в другую при 500-720С и создают непроницаемую перегородку из кварцевого стекла между оболочечным и сердцевинным составами, после чего осуществляют гомогенизацию и отверждение расплавов. Формирование стекол для сердцевины и оболочки из одного расплава, гомогенизация и отверждение последних в одних и тех же условиях обеспечивают получение пары стекол для сердцевины и оболочки с требуемой разностью показателей преломления. 4 з.п. ф-лы.
Формула изобретения
1. Способ получения пар высокочистых стекол системы As-S для сердцевины и оболочки одномодовых световодов и малоапертурных многомодовых световодов, включающий синтез путем сплавления высокочистых As и S при 700-800С в вакуумированном реакторе из высокочистого кварцевого стекла, гомогенизацию и отверждение расплава, отличающийся тем, что синтез ведут в двухкамерном реакторе, который отжигают в атмосфере азота при температуре не ниже 900С, после синтеза расплав разливают в камеры, затем образуют расплав для сердцевины и расплав для оболочки, для чего часть расплава из одной камеры перегоняют в другую при 500-720С, и создают непроницаемую перегородку из кварцевого стекла между оболочечным и сердцевинным составами.
2. Способ по п.1, отличающийся тем, что полученный после синтеза расплав разливают в обе камеры с последующей перегонкой части расплава из одной камеры в другую.
3. Способ по п.1, отличающийся тем, что после синтеза расплав заливают в одну из камер с последующей перегонкой части расплава в свободную камеру.
4. Способ по п.1, отличающийся тем, что после синтеза расплав разливают в обе камеры с последующей перегонкой части расплава, находящегося в одной из камер, в дополнительную емкость с последующим отделением ее от реактора.
5. Способ по п.1, отличающийся тем, что после отжига реактора на его внутреннюю поверхность наносят слой безгидроксильного диоксида кремния.
Описание изобретения к патенту
Предлагаемое изобретение относится к волоконной оптике и касается разработки способа получения сульфидно-мышьяковых стекол для сердцевины и оболочки одномодовых волоконных световодов и малоапертурных многомодовых световодов, используемых в оптике и приборах для ближнего и среднего ИК-диапазона.
Волоконные световоды на основе сульфида мышьяка изготовляют методом “штабик-трубка” или методом двойного тигля из двух стекол, одно из которых является стеклом для сердцевины, а второе - стеклом оболочки. Ключевым параметром, определяющим геометрические и волноводные характеристики световода, особенно одномодового, является разница в показателях преломления стекол сердцевины и оболочки (n). Показатель преломления стекол системы As-S определяется соотношением макрокомпонентов (As:S) и температурно-временными режимами отверждения расплава в стекло. Для изготовления одномодовых световодов и малоапертурных многомодовых световодов n должно иметь небольшое значение. Соответствующая разница в составе стекол сердцевины и оболочки составляет меньше одного атомного процента в содержании мышьяка (или серы).
Традиционный способ получения стекол для сердцевины и оболочки состоит в плавлении шихты из мышьяка и серы в запаянном вакуумированном контейнере из кварцевого стекла с последующим отверждением расплава в стекло. Разность показателей преломления задается соотношением мышьяк: сера, т.е. количеством мышьяка и серы в шихте для синтеза каждого из стекол. Получение каждого стекла осуществляется как отдельные процессы (см., например, Борисова З.У. - Химия стеклообразующих полупроводников. Изд-во ЛГУ, 1972, 246 с.).
Такой способ обеспечивает получение стекол с точным заданным составом. Недостатком способа применительно к получению стекол для волоконных световодов является невысокая степень чистоты по примесям кислорода и водорода. Взвешивания исходных элементов даже в защитной атмосфере, последующее их измельчение и загрузка в реактор синтеза приводят к появлению на поверхности мышьяка и серы оксидов и воды. Полное их удаление при вакуумировании реактора не достигается.
Известны решения, направленные на повышение степени чистоты стекол, полученных сплавлением элементов. Это проведение загрузки мышьяка и серы в реактор вакуумной сублимацией и дистилляцией (M.F.Churbanov, J.N.C.S., 140 (1992), 324-330) и использование в качестве источника мышьяка моносульфида мышьяка, более устойчивого к окислению и более летучего по сравнению с элементарным мышьяком (Патент РФ 1721997, от 06.06.95). Недостаток этих решений применительно к получению стекол для изготовления одномодовых световодов и многомодовых световодов с малой апертурой состоит в трудности воспроизводимо получить пару стекол с требуемой разностью показателей преломления. Отклонения состава получаемых стекол от ожидаемого по взятому исходному количеству элементов может достигать одного абсолютного процента. Дополнительным осложнением является то, что при раздельном синтезе стекол сердцевины и оболочки могут иметь место неконтролируемые колебания в показателе преломления стекол (Химинец В.В. Квантовая электроника, № 24, 1983) из-за различий в температурно-временных режимах синтеза и отверждения расплава. Показатель преломления стекла одного и того же состава существенно зависит от начальной температуры расплава и скорости его отверждения. Различие может достигать нескольких единиц во втором знаке, что эквивалентно различию в составе стекла около одного атомного процента. В силу этих двух причин полученная таким путем в двух последовательных синтезах пара стекол может не иметь ожидаемой разницы показателей преломления, вплоть до ее полного отсутствия. Это делает невозможным априори определить диаметр сердцевины одномодового световода, обеспечивающий требуемую длину волны отсечки. В случае многомодовых световодов величина числовой апертуры может существенно не совпадать с ожидаемой. Воспроизводимость от эксперимента к эксперименту оптических характеристик стекол и изготовленных из них световодов будет плохой. Для получения пары стекол с необходимой разностью показателей преломления приходится получать большее, чем два, количество стекол, устанавливать их состав (или показатель преломления) и по результатам измерения выбирать из группы стекол пару с требуемой величиной n.
В качестве прототипа выбран способ получения высокочистого стекла системы As-S для изготовления ИК-световодов, включающий синтез путем сплавления высокочистых As и S при температуре 750-800С в вакуумированном реакторе из высокочистого кварцевого стекла, гомогенизацию и отверждение расплава (Багров А.М. и др. Волоконные световоды среднего ИК-диапазона на основе As-S и As-Se с оптическими потерями менее 1 дБ/м. Квантовая электроника, 1983, т.10, № 9, с.1906-1907). Согласно прототипу в одном синтезе получают стекло для сердцевины световода, а в другом - стекло для оболочки.
Недостатками прототипа являются отмеченная выше трудность с получением пары стекол с требуемой разностью показателей преломления и ее воспроизводимость от эксперимента к эксперименту.
Задачей, на решение которой направлено предлагаемое изобретение, является повышение экономичности и эффективности получения пар высокочистых стекол системы As-S для изготовления ИК-световода.
Технический результат - обеспечение в одном технологическом процессе высокой степени чистоты и заданной разности показателей преломления получаемой пары стекол для сердцевины и оболочки.
Поставленная задача решается тем, что в известном способе получения высокочистых стекол системы As-S для изготовления ИК-световода, включающем синтез путем сплавления высокочистых серы и мышьяка, при 700-800С в вакуумированном реакторе из высокочистого кварцевого стекла, гомогенизацию и отверждение расплава, согласно изобретению синтез ведут в двухкамерном реакторе, который отжигают в атмосфере азота при температуре не ниже 900С, после синтеза расплав разливают в камеры (камеру) и образуют отличающиеся по составу расплав для стекла сердцевины и расплав для стекла оболочки, для чего часть расплава из одной камеры перегоняют в другую при 500-720С и создают непроницаемую перегородку из кварцевого стекла между сердцевинным и оболочечным расплавами.
При различии содержания As и S в стеклах на 0,1-0,5 ат.% для световодов с малой апертурой предпочтительно полученный после синтеза расплав разливать в обе камеры с последующей перегонкой части расплава из одной камеры в другую.
Для создания разницы в содержании As и S в стеклах на 0,5-1 ат.% предпочтительно полученный после синтеза расплав заливать в одну из камер с последующей отгонкой части расплава в свободную камеру. Стекло в камере - приемнике дистиллята является стеклом сердцевины, стекло в камере, из которой отгоняли, - стеклом оболочки.
В случае необходимости иметь соизмеримые количества стекол сердцевины и оболочки и изменять состав только оболочки расплав после синтеза разливают в обе камеры, создают между ними перегородку и перегоняют часть расплава из одной камеры в дополнительную емкость с последующим ее отделением от реактора. Расплав в камере, из которой отгоняли, после отверждения является стеклом оболочки.
Обработка реактора из высокочистого кварцевого стекла отжигом в атмосфере азота при температуре не ниже 900°С существенно снижает загрязнение получаемого стекла водородсодержащими примесями (ОН- и SH-группы) при достаточно высокой температуре плавления исходной шихты.
Для некоторых областей практического применения, когда требуются стекла практически с полным отсутствием ОН-групп, целесообразно на внутреннюю поверхность реактора нанести слой безгидроксильного диоксида кремния, предпочтительно толщиной до 150 мкм.
В заявленном изобретении получение расплавов для стекол сердцевины и оболочки, отличающихся соотношением в них мышьяка и серы, основано на фракционировании макрокомпонентов при вакуумной перегонке исходного расплава. Пары над расплавом и полученный из них конденсат содержат больше мышьяка, чем исходный расплав и расплав, остающийся после отгонки. Расплав в камере, в которой конденсируют отгоняемые пары, при отверждении образует стекло для сердцевины световода. Расплав в камере, из которой отгоняли пары, образует стекло оболочки. Стекло с более высоким содержанием мышьяка имеет более высокий показатель преломления.
Разницей в показателях преломления стекол в предлагаемом способе управляют, изменяя объем камер реактора, массу исходного расплава в каждой из камер, долю отгоняемого расплава.
Формирование стекол для сердцевины и оболочки из одного расплава, гомогенизация и отверждение последних в одних и тех же условиях обеспечивают получение пары стекол для сердцевины и оболочки требуемых составов в одном технологическом цикле. При этом разница показателей преломления определяется только разностью составов.
Используя вышеупомянутое явление фракционирования макрокомпонентов, авторы настоящего изобретения подобрали условия перегонки расплава, а именно интервал температур 500-720С, при которой отгоняют часть расплава для создания различия в составах стекол сердцевины и оболочки. При температуре ниже 500С скорость перегонки низкая и с практической точки зрения неприемлема, а при температуре выше 720С разделительный эффект недостаточен.
В зависимости от требуемой разницы показателей преломления получаемой пары стекол рассчитывают, какую часть расплава необходимо отогнать, чтобы получить пару стекол для сердцевины и оболочки с необходимым различием составов. Долю отогнанного расплава контролируют временем отгонки.
Совокупность отличительных признаков, реализуемых в способе, позволяет за один технологический процесс получать высокочистые стекла для сердцевины и оболочки заданных составов.
Пример 1. Для получения пары высокочистых стекол с заданным составом подготавливают реактор, отжигая его в атмосфере азота при 900С. Для некоторых областей практического применения, когда требуется практически полное отсутствие ОН-групп, на внутреннюю поверхность реактора наносят слой безгидроксильного диоксида кремния, толщиной порядка 150 мкм. В одну из камер реактора из высокочистого кварцевого стекла в условиях динамического вакуума загружают исходные вещества - серу и мышьяк или моносульфид мышьяка и серу, образуя шихту, содержащую 39,0 ат.% мышьяка и 61,0 ат.% серы. Реактор отпаивают и отделяют от вакуумной системы, помещают в качающуюся печь, где проводят синтез стеклообразующего расплава при температуре 750С. После синтеза расплав разливают в обе камеры и отгоняют 10% расплава из одной камеры в другую, образуя расплав для сердцевины и расплав для оболочки. Перепайкой межкамерной трубки создают перегородку между сердцевинным и оболочечным расплавами, не нарушая конструкционной целостности реактора. Затем осуществляют гомогенизацию расплавов и последующее отверждение в стекло. Расплав отверждается в стекло в режиме выключенной печи. Оба расплава находятся при одной и той же температуре и отверждаются при одном и том же температурно-временном режиме, поэтому различие в показателях преломления стекол определяется только разностью составов. Остывшие цилиндрические слитки стекла извлекают из реактора и используют для вытяжки световодов, измерения состава и показателя преломления. Состав стекла определяют химическим анализом и методом ИК-спектрометрии. Стекло сердцевины содержит 39,4 ат.% мышьяка и 60,6 ат.% серы. Стекло оболочки содержит 38,7 ат.% мышьяка и 61,3 ат.% серы. Разница показателей преломления составляет 0.007, что обеспечивает величину числовой апертуры 0.18.
Пример 2. Как в примере 1, получают расплав состава 38,0 ат.% мышьяка и 62,0 ат.% серы. После синтеза расплав разливают в одну из камер и отгоняют в свободную камеру 23% исходного расплава. Затем, как в примере 1, создают перегородку в межкамерной соединительной трубке. Все дальнейшие действия такие же, как в примере 1. Полученное стекло сердцевины имеет состав 38,4 ат.% мышьяка и 61,6 ат.% серы, стекло оболочки - 37,9 ат.% мышьяка и 62,1 ат.% серы. Разность показателей преломления стекол сердцевины и оболочки, соответствующая измеренным составам стекол, равна 0.001, а вычисленная из измеренной числовой апертуры световода - 0.07.
Пример 3. Реактор в отличие от примеров 1 и 2 имеет дополнительную емкость, соединенную с одной из камер трубкой, расположенной под углом к продольной оси реактора. Размеры дополнительной емкости меньше, чем первых двух камер. Непосредственно после разделения расплава на две части перепайкой создают перегородку на межкамерной трубке. Из реактора при 550С отгоняют 17% расплава в дополнительную емкость, находящуюся при температуре 200С. После этого дополнительную емкость перепайкой соединительной трубки отсекают и полностью отделяют от реактора. Реактор помещают в печь для гомогенизации расплавов. Все дальнейшие операции выполняются так же, как и в примерах 1 и 2. Стекло из исходного расплава, находящегося в одной камере, используется как сердцевинное, стекло в другой камере - как оболочечное. При составе исходного стекла 40 ат.% мышьяка и 60 ат.% серы оболочечное стекло содержало 39,4 ат.% мышьяка и 60,6 ат.% серы. Это обеспечивает величину n=0.006, значение числовой апертуры 0.17.
Класс C03C3/32 составы для изготовления стекла, не содержащие оксидов, например двойные или тройные галогенные соединения, сульфиды или нитриды германия, селена или теллура
Класс C03B37/023 волокон, состоящих из различных сортов стекла, например волоконной оптики