способ электронно-лучевой сварки

Классы МПК:B23K15/02 схемы управления для этих целей
Автор(ы):, , , , ,
Патентообладатель(и):Пермский государственный технический университет (RU)
Приоритеты:
подача заявки:
2002-12-15
публикация патента:

Изобретение относится к сварке, в частности к способу электронно-лучевой сварки, и может найти применение при изготовлении ответственных конструкций в различных отраслях машиностроения. Сварку осуществляют со сквозным проплавлением и релейным регулированием процесса путем уменьшения тока электронного пучка при появлении сквозного проплавления и увеличения его при переходе в режим частичного проплавления. В процессе сварки регистрируют ток коллектора электронов, установленного над зоной сварки и находящегося под положительным потенциалом относительно изделия. В качестве информационных параметров, характеризующих момент сквозного проплавления, используют амплитуду колебаний составляющих спектра вторичного тока. Одновременно с регистрацией тока коллектора электронов осуществляют осцилляцию электронного пучка по круговой или Х-образной траектории, и амплитуду колебаний составляющих спектра вторичного тока используют в диапазонах 200-1000 Гц и 3-50 кГц. Появление сквозного проплавления определяют по одновременному снижению амплитуд составляющих спектра в указанных диапазонах или по снижению амплитуды одной из составляющих спектра вторичного тока. Способ обеспечивает существенное повышение точности и надежности регулирования процессов сварки со сквозным проплавлением изделий толщиной 5-40 мм. 3 ил.

Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

Способ электронно-лучевой сварки, при котором электронно-лучевую сварку осуществляют со сквозным проплавлением и релейным регулированием процесса путем уменьшения тока электронного пучка при появлении сквозного проплавления и увеличения его при переходе в режим частичного проплавления, при этом в процессе сварки регистрируют ток коллектора электронов, установленного над зоной сварки и находящегося под положительным потенциалом относительно изделия, а в качестве информационных параметров, характеризующих момент сквозного проплавления, используют амплитуду колебаний составляющих спектра вторичного тока, отличающийся тем, что одновременно с регистрацией тока коллектора электронов осуществляют осцилляцию электронного пучка по круговой или Х-образной траектории, и амплитуду колебаний составляющих спектра вторичного тока используют в диапазонах 200-1000 Гц и 3-50 кГц, при этом появление сквозного проплавления определяют по одновременному снижению амплитуд составляющих спектра в указанных диапазонах или по снижению амплитуды одной из составляющих спектра вторичного тока.

Описание изобретения к патенту

Изобретение относится к области электронно-лучевой сварки и может быть использовано в установках для электронно-лучевой сварки.

Известен способ электронно-лучевой сварки с регулированием мощности электронного пучка, при котором осуществляют сравнение опорного сигнала с сигналом, получаемым на коллекторе электронов при сквозном проплавлении детали, и по результирующему сигналу производят выбор параметров электронного луча [1]. При данном способе коллектор электронов устанавливают под свариваемым изделием. Способ позволяет с высокой точностью выбрать параметры электронного пучка, обеспечивающие качественное формирование наружного и корневого валиков при электронно-лучевой сварке металлов со сквозным проплавлением.

Недостатком этого способа является необходимость свободного доступа под свариваемое изделие, который не всегда имеется в производственных условиях.

Наиболее близким к описываемому по технической сущности и достигаемому эффекту является способ электронно-лучевой сварки [2], при котором осуществляют релейное регулирование процесса электронно-лучевой сварки со сквозным проплавлением, уменьшая ток электронного пучка при появлении сквозного проплавления и увеличивая его при переходе в режим частичного проплавления, а информацию о моменте сквозного проплавления получают с помощью заземленного коллектора электронов, расположенного над свариваемым изделием. В качестве информационных параметров, характеризующих момент сквозного проплавления, используются постоянная составляющая, амплитуда и частота переменной составляющей сигнала тока отраженных электронов. Для повышения достоверности работы вводится обнаружение по двум или трем параметрам. Данный способ выбран в качестве прототипа.

Недостатком известного способа является низкая точность регулирования при электронно-лучевой сварке металлов толщиной более 10 мм.

Признаки прототипа, являющиеся общими с заявляемым изобретением, - сварку осуществляют со сквозным проплавлением и релейным регулированием процесса путем уменьшения тока электронного пучка при появлении сквозного проплавления и увеличения его при переходе в режим частичного проплавления, при этом в процессе сварки регистрируют ток коллектора электронов, установленного над зоной сварки и находящегося под положительным потенциалом относительно изделия, а в качестве информационных параметров, характеризующих момент сквозного проплавления, используют амплитуды колебаний составляющих спектра вторичного тока.

Задачей изобретения является повышение точности и надежности регулирования процесса электронно-лучевой сварки со сквозным проплавлением изделий толщиной 5...40 мм.

Поставленная задача достигается тем, что в известном способе электронно-лучевой сварки, при котором сварку осуществляют со сквозным проплавлением и релейным регулированием процесса путем уменьшения тока электронного пучка при появлении сквозного проплавления и увеличения его при переходе в режим частичного проплавления, при этом в процессе сварки регистрируют ток коллектора электронов, установленного над зоной сварки и находящегося под положительным потенциалом относительно изделия, а в качестве информационных параметров, характеризующих момент сквозного проплавления, используют амплитуды колебаний составляющих спектра вторичного тока, одновременно с регистрацией тока коллектора электронов осуществляют осцилляцию электронного пучка по круговой или Х-образной траектории и используют амплитуду составляющих спектра вторичного тока в диапазонах 200...1000 Гц и 3...50 кГц, при этом появление сквозного проплавления определяют по одновременному снижению амплитуд составляющих спектра в указанных диапазонах или по снижению амплитуды одной из составляющих спектра вторичного тока.

Отличие предлагаемого способа от способа по прототипу состоит в том, что одновременно с регистрацией тока коллектора электронов осуществляют осцилляцию электронного пучка по круговой или Х-образной траектории и используют амплитуду составляющих спектра вторичного тока в диапазонах 200... 1000 Гц и 3...50 кГц, при этом появление сквозного проплавления определяют по одновременному снижению амплитуд составляющих спектра в указанных диапазонах или по снижению амплитуды одной из составляющих спектра вторичного тока.

Отличительные признаки в совокупности с известными обеспечивают повышение точности и надежности регулирования процесса электронно-лучевой сварки со сквозным проплавлением изделий толщиной 5...40 мм.

На фиг.1 представлена блок-схема устройства для осуществления способа. В установке для электронно-лучевой сварки, содержащей электронную пушку 1 с отклоняющими катушками 2 и коллектор 3 электронов для регистрации вторичного тока, в процессе сварки с помощью блока 4 производят осцилляцию электронного пучка по круговой или Х-образной траектории и регистрируют вторичный ток в цепи, содержащей источник 5 напряжения смещения и резистор 6 нагрузки, последовательно подключенные к коллектору 3 электронов. Напряжение с резистора 6 нагрузки, пропорциональное величине вторичного тока, обрабатывается полосовыми фильтрами 7, 8 с целью выделения из спектра колебаний вторичного тока составляющих с частотами в диапазонах 200... 1000 Гц и 3...50 кГц соответственно. Сигналы с выходов фильтров 7, 8 поступают на амплитудные детекторы 9, 10. После амплитудного детектирования сигналы с выходов амплитудных детекторов 9, 10 поступают на входы блока управления 11, который регулирует ток электронного луча с помощью блока 12 управления током луча.

Способ осуществляется следующим образом. На первом этапе экспериментально определяют значение тока луча Iл_скв, обеспечивающее гарантированное начало сквозного проплавления для заданной толщины металла. Далее, также экспериментально, определяют значение тока луча Iл_не_скв, наиболее близкое к Iл_скв, при котором сквозное проплавление металла данной толщины прекращается. Сварочный цикл начинается при токе луча, равном Iл_не_скв. В этот период регистрируются и запоминаются значения амплитуды колебаний тока коллектора в диапазоне 200...1000 Гц Iк_низк и в диапазоне 3...50 кГц Iк_высок. Далее ток луча ступенчато увеличивается до значения Iл_скв, что приводит к появлению сквозного проплавления. Момент появления сквозного проплавления определяют по снижению амплитуд составляющих спектра вторичного тока в диапазонах 200...1000 Гц и (или) 3...50 кГц ниже определенных уровней способ электронно-лучевой сварки, патент № 2237557 и (или) способ электронно-лучевой сварки, патент № 2237557 задаваемых в процентах от Iк_низк и Iк_высок соответственно. При появлении сквозного проплавления ток луча ступенчато снижается до величины Iл_не_скв, что через некоторое время приводит к прекращению сквозного проплавления. Момент прекращения сквозного проплавления определяют по увеличению амплитуд составляющих спектра вторичного тока в диапазонах 200...1000 Гц и (или) 3...50 кГц выше значений способ электронно-лучевой сварки, патент № 2237557 и (или) способ электронно-лучевой сварки, патент № 2237557. Далее процесс повторяется, начиная с увеличения тока луча до величины, равной Iл_скв.

Экспериментальное опробование способа осуществлялось на электронно-лучевой сварочной установке ЭЛА-60/60 при использовании образцов толщины 15 мм из стали 12Х18Н10Т. Развертка электронного пучка по круговой и Х-образной траектории с частотой 330 Гц осуществлялась от внешнего генератора разверток электронного луча. Сигнал с коллектора электронов, установленного над зоной сварки, обрабатывался с помощью компьютерной информационно-измерительной системы на базе IBM-совместимого компьютера, оснащенного многоканальным аналого-цифровым интерфейсом. После обработки сигнала с коллектора компьютерная система формировала управляющий сигнал на блок управления током луча, уменьшая его при появлении сквозного проплавления и увеличивая при переходе в режим частичного проплавления.

На фиг.2 показано изменение амплитуды колебаний составляющих спектра вторичного тока с частотами в диапазоне 2,5...20 кГц (а), 200...1000 Гц (б) и на частоте осцилляции (в) при выполнении сварочного прохода с осцилляцией электронного пучка по образцу толщиной 25 мм с участком, толщина металла на котором составляла 17 мм. Зафиксированное время начала сквозного проплавления - 5,2 с.

На фиг.3 показано изменение амплитуды колебаний составляющих спектра вторичного тока с частотами в диапазоне 2,5...20 кГц (а), 200...1000 Гц (б) во время прохождения аналогичного образца при электронно-лучевой сварке без осцилляции электронного пучка.

Сварочные режимы выбирались таким образом, чтобы частичное проплавление на основном участке образца сменялось сквозным во время прохождения участка с уменьшенной толщиной металла. Видно, что во время электронно-лучевой сварки без осцилляции при используемой толщине металла амплитуда вторично-эмиссионного тока во время появления сквозного проплавления практически не изменялась. В то же время амплитуды колебаний с частотами в диапазонах 200...1000 Гц и 3...50 кГц, а также амплитуда составляющей на частоте осцилляции во время электронно-лучевой сварки с осцилляцией пучка резко снижались при появлении сквозного проплавления. Таким образом, применение осцилляции увеличивает уровень информационного сигнала, характеризующего появление сквозного проплавления. Это связано с возрастанием поперечных размеров нижних областей канала проплавления, и соответственно, увеличением интенсивности потока плазмы, покидающей канал проплавления с нижней стороны свариваемого металла при сквозном проплавлении.

Предлагаемый способ по сравнению с прототипом обеспечивает существенное повышение точности и надежности регулирования процессов электронно-лучевой сварки со сквозным проплавлением изделий толщиной 5-40 мм благодаря увеличению уровня полезного сигнала за счет регистрации тока коллектора электронов, установленного над зоной сварки и находящегося под положительным потенциалом относительно изделия с одновременной осцилляцией электронного пучка по круговой или Х-образной траектории, и использования в качестве информационных параметров, характеризующих момент сквозного проплавления, амплитуд колебаний составляющих спектра вторичного тока в диапазонах 200...1000 Гц и 3...50 кГц.

Источники информации

1. Авторское свидетельство СССР №1106097, кл. В 23 К 15/002.

2. Обработка вторичных излучений для контроля и управления процессом электронно-лучевой сварки. / В.А.Батухтин, В.В.Башенко. // Автоматическое управление технологическим процессом электронно-лучевой сварки: Сб. науч. тр. - Киев: ИЭС им. Е.О.Патона, 1987. - с.64-74.

Класс B23K15/02 схемы управления для этих целей

способ оперативного контроля электронно-лучевой сварки -  патент 2519155 (10.06.2014)
способ контроля электронно-лучевой сварки -  патент 2495737 (20.10.2013)
способ электронно-лучевой сварки -  патент 2494846 (10.10.2013)
устройство для управления процессом электронно-лучевой сварки -  патент 2469827 (20.12.2012)
устройство для управления процессом электронно-лучевой сварки -  патент 2467849 (27.11.2012)
катодный узел сварочной электронно-оптической системы с катодом косвенного подогрева электронной бомбардировкой -  патент 2335383 (10.10.2008)
способ электронно-лучевой сварки труб -  патент 2285599 (20.10.2006)
способ формирования микрорельефа поверхности изделий -  патент 2248266 (20.03.2005)
система управления процессом электронно-лучевой сварки -  патент 2161085 (27.12.2000)
способ контроля и позиционирования луча для обработки заготовок и устройство для его осуществления -  патент 2155654 (10.09.2000)
Наверх