способ определения скорости конвекции почвенных газов

Классы МПК:G01T1/178 для измерения удельной активности при наличии других радиоактивных веществ, например естественной радиоактивности в воздухе или в жидкости, такой, как дождевая вода
G01N23/223 облучением образца рентгеновскими лучами и измерением рентгенофлуоресценции
Автор(ы):,
Патентообладатель(и):Томский политехнический университет (RU)
Приоритеты:
подача заявки:
2003-07-25
публикация патента:

Использование: в геофизике, в сейсмологии, в радиоэкологии. Сущность: способ основан на модельных представлениях о переносе почвенных газов в пористых средах, причем одновременно измеряют объемную активность радона в двух точках, расположенных на расстоянии от 0,2 до 1 м друг от друга, измерение в одной точке производят на глубине h1 от 0,2 до 0,5 м, а в другой - на глубине h2=2h1, а затем рассчитывают скорость конвекции почвенных газов. Технический результат - упрощение способа, повышение достоверности измерений.

Формула изобретения

Способ определения скорости конвекции почвенных газов, основанный на модельных представлениях о переносе почвенных газов в пористых средах, отличающийся тем, что одновременно измеряют объемную активность радона в двух точках, расположенных на расстоянии от 0,2 до 1 м друг от друга, причем измерение в одной точке производят на глубине h1 от 0,2 до 0,5 м, а в другой - на глубине h2=2h1, а затем скорость конвекции почвенных газов определяют из выражения

способ определения скорости конвекции почвенных газов, патент № 2239206

где A1 - объемная активность радона на глубине h1, Бк/м3;

А2 - объемная активность радона на глубине h2, Бк/м3;

h1 - глубина, на которой производят первое измерение, м;

De - эффективный (объемный) коэффициент диффузии радона, м2/с;

способ определения скорости конвекции почвенных газов, патент № 2239206 - постоянная распада радона, с-1.

Описание изобретения к патенту

Изобретение относится к области измерения ядерных излучений, а именно к определению скорости конвекции почвенных газов, и может быть использовано в геохимии, в геофизике, в сейсмологии при краткосрочном прогнозировании землетрясений, в радиоэкологии при инженерно-экологических изысканиях.

Существующие способы определения скорости конвекции почвенных газов основаны на гидродинамической модели, требуют подробной информации о физико-геологических параметрах грунтов и данных о градиентах температур или давлений в грунтах.

Известен способ определения скорости конвекции, выбранный в качестве прототипа и заключающийся в том, что в соответствии с гидродинамической моделью скорость конвекции определяют по формуле (закон Дарси) [van der Spoeel W.H. et al. // Health Phys. 1999, V.77(2), pp.163-177]:

способ определения скорости конвекции почвенных газов, патент № 2239206

где k - газопроницаемость породы, м;

способ определения скорости конвекции почвенных газов, патент № 2239206 - динамическая вязкость воздуха (1,83способ определения скорости конвекции почвенных газов, патент № 223920610-5 Паспособ определения скорости конвекции почвенных газов, патент № 2239206с при Т=20способ определения скорости конвекции почвенных газов, патент № 2239206С);

Pa - давление воздуха, Па;

способ определения скорости конвекции почвенных газов, патент № 2239206a - плотность воздуха, кг/м3;

g - ускорение силы тяжести, м/с2.

Газопроницаемость (k) и градиент давления (способ определения скорости конвекции почвенных газов, патент № 2239206Pa) для исследуемых грунтов измеряют с помощью стандартных приборов и методик.

Недостатками известного способа являются: 1) скорость конвекции (способ определения скорости конвекции почвенных газов, патент № 2239206) определяется заведомо с большой погрешностью, т.к. формула (1) не учитывает процессов теплообмена и влагооборота в системе атмосфера - суша, влияющих на величину способ определения скорости конвекции почвенных газов, патент № 2239206; 2) необходимость измерения газопроницаемости и градиента давления почвенного газа в грунтах, которые также определяются с соответствующей погрешностью, увеличивая тем самым суммарную погрешность определения скорости конвекции.

Задачей изобретения является разработка простого, дешевого и достоверного способа определения скорости конвекции почвенных газов.

Поставленная задача решается за счет того, что в способе определения скорости конвекции почвенных газов, основанном на диффузионно-конвективной модели переноса радона в пористых средах [Новиков Г.Ф. Радиометрическая разведка. Л., 1975, 406 с.], согласно изобретению одновременно измеряют объемную активность радона в двух точках, расположенных на расстоянии от 0,2 м до 1 м друг от друга, причем, измерение в одной точке производят на глубине h1 причем измерение в одной точке производят на глубине h1 от 0,2 до 0,5 м, а в другой - на глубине h2=2h1, а затем скорость конвекции определяют из выражения:

способ определения скорости конвекции почвенных газов, патент № 2239206

где А1 - объемная активность радона на глубине h1, Бк/м3;

А2 - объемная активность радона на глубине h2, Бк/м3;

h1 - глубина, на которой производят первое измерение, м;

De - эффективный (объемный) коэффициент диффузии радона, м2/с;

способ определения скорости конвекции почвенных газов, патент № 2239206 - постоянная распада радона, с-1.

Ограничение на максимальное расстояние между двумя точками измерения, равное 1 м, обусловлено тем, что свойства грунтов при измерениях должны быть одинаковыми. Минимальное расстояние, равное 0,2 м, связано с техническими сложностями проведения измерений на меньших расстояниях. Рекомендуемые глубины измерений от 0,2 до 1 м обусловлены следующими причинами: 1) на таких глубинах объемная активность радона изменяется достаточно быстро, что позволяет снизить погрешность определения скорости конвекции; 2) глубина h1, на которой производится первое измерение, не должна быть меньше 0,2 м, т.к. на меньших глубинах велико влияние атмосферных условий, что приводит к снижению достоверности полученных результатов; 3) с увеличением глубины измерений больше 1 м повышается их стоимость и снижается точность определения скорости конвекции.

Измеряемые значения объемной активности радона автоматически учитывают конвективный перенос почвенных газов в реальных климатических и погодных условиях и физико-геологические свойства грунтов. Поэтому предлагаемый способ не требует дополнительных измерений, связанных с определением газопроницаемости грунтов и градиента давления почвенных газов, а использование глубин, отличающихся в 2 раза, позволяет определить скорость конвекции из простого аналитического выражения (2).

Таким образом, предлагаемый способ определения скорости конвекции почвенных газов является простым и дешевым, т.к. не требует проведения измерений, связанных с определением газопроницаемости грунтов и градиента давления почвенных газов. Предлагаемый способ является достоверным, т.к. найденные из выражения (2) значения скорости конвекции не содержат погрешностей, связанных с определением газопроницаемости грунтов и градиента давления, не требуют модельных представлений о сложном процессе конвекции почвенных газов, а также автоматически учитывают процессы теплообмена и влагооборота в системе атмосфера - суша, влияющие на величину скорости конвекции почвенных газов.

Почвенные газы всегда содержат радиоактивный газ радон, который является продуктом распада содержащегося в земной коре урана (радия). В предлагаемом способе определения скорости конвекции почвенных газов радон является удобным для измерений индикатором. Кроме того, для описания переноса радона в почвогрунтах разработана диффузионно-конвективная модель [Новиков Г.Ф. Радиометрическая разведка. Л., 1975. 406 с.], которая хорошо апробирована на практике и широко используется при поиске урановых руд и оценках радоноопасности территорий [Павлов И.В., Покровский С.С., Камнев Е.Н. Способы обеспечения радиационной безопасности при разведке и добыче урановых руд. М.: Энергоатомиздат, 1994. 256 с.]. В соответствии с этой моделью распределение объемной активности радона по глубине описывается выражением:

способ определения скорости конвекции почвенных газов, патент № 2239206

где z - глубина, м;

способ определения скорости конвекции почвенных газов, патент № 2239206 - равновесная объемная активность радона, Бк/м3;

De - эффективный коэффициент диффузии радона, м2/с;

способ определения скорости конвекции почвенных газов, патент № 2239206 - скорость конвекции радона, м/с;

способ определения скорости конвекции почвенных газов, патент № 2239206 - постоянная распада радона, с-1.

Если известны значения объемной активности радона на двух различающихся в два раза глубинах, то, используя выражение (3), можно получить формулу (2) для определения скорости конвекции способ определения скорости конвекции почвенных газов, патент № 2239206.

Изобретение иллюстрируется следующим примером.

Для измерений объемной активности радона в почвенном воздухе выбрали площадку, расположенную в “Лагерном саду” г.Томска, на которой пробурили два шпура на расстоянии 0,5 м друг от друга специально изготовленным буром. Первый шпур глубиной 35 см (h1), второй глубиной 70 см (h2) и оба диаметром 5,5 см. В каждый шпур помещали индивидуальный пассивный радиометр радона (ИПРР) с нитроцеллюлозным трековым детектором способ определения скорости конвекции почвенных газов, патент № 2239206-частиц, входящий в комплекс средств измерений интегральной объемной активности 222Rn в воздухе трековым методом (АИСТ-ТРАЛ), (Санкт-Петербург). Шпуры герметично закрывали сверху и выдерживали в течение 3 суток. Затем ИПРР вынимали и определяли объемную активность радона первого (А1) и второго (A2) трековых детекторов согласно инструкции по эксплуатации комплекса АИСТ-ТРАЛ. Измеренное значение A1 составило 6,8 кБк/м3, А2 11,4 кБк/м3. Скорость конвекции почвенных газов, рассчитанная по формуле (2), составила 1,7способ определения скорости конвекции почвенных газов, патент № 223920610-4 см/с при эффективном коэффициенте диффузии радона De=0,032 см/с.

Класс G01T1/178 для измерения удельной активности при наличии других радиоактивных веществ, например естественной радиоактивности в воздухе или в жидкости, такой, как дождевая вода

способ измерения скорости адвекции почвенных газов -  патент 2470328 (20.12.2012)
способ измерения эффективного коэффициента диффузии радона и торона в грунте -  патент 2470327 (20.12.2012)
способ определения содержания стронция-90 в жидкостях -  патент 2397511 (20.08.2010)
способ определения эффективного коэффициента диффузии радона в почвогрунтах -  патент 2332687 (27.08.2008)
монитор радиоактивности окружающей среды -  патент 2267140 (27.12.2005)
способ измерения коэффициента эманирования радона-222 в почвогрунтах -  патент 2239207 (27.10.2004)
устройство для определения концентрации радиоактивных веществ -  патент 2217777 (27.11.2003)
способ определения стронция-90 в твердых образцах -  патент 2184382 (27.06.2002)
способ измерения -активности среды и твердый сцинтилляционный детектор для его осуществления -  патент 2059264 (27.04.1996)
способ обнаружения и измерения концентрации радона в среде и устройство для его осуществления -  патент 2035722 (20.05.1995)

Класс G01N23/223 облучением образца рентгеновскими лучами и измерением рентгенофлуоресценции

рентгеноспектральный анализ негомогенных материалов -  патент 2524559 (27.07.2014)
способ изготовления эталонов для рентгенофлуоресцентного анализа состава тонких пленок малокомпонентных твердых растворов и сплавов -  патент 2523757 (20.07.2014)
способ измерения весовой концентрации глины в образце пористого материала -  патент 2507510 (20.02.2014)
рентгеновский анализатор -  патент 2504756 (20.01.2014)
устройство и способ для рентгеновского флуоресцентного анализа образца минерала -  патент 2499252 (20.11.2013)
энергодисперсионный поляризационный рентгеновский спектрометр -  патент 2494382 (27.09.2013)
поляризационный спектрометр -  патент 2494381 (27.09.2013)
поляризационный рентгеновский спектрометр -  патент 2494380 (27.09.2013)
способ поузловой трибодиагностики авиационной техники по параметрам частиц изнашивания -  патент 2491536 (27.08.2013)
устройство для рентгенофлуоресцентного анализа вещества -  патент 2490617 (20.08.2013)
Наверх