регулятор температуры энергетической установки транспортного средства

Классы МПК:F01P7/00 Регулирование потока охладителя
F02D45/00 Электрическое управление и регулирование, не отнесенные к группам  41/00
Автор(ы):, ,
Патентообладатель(и):Российский государственный открытый технический университет путей сообщения (RU)
Приоритеты:
подача заявки:
2003-02-19
публикация патента:

Изобретение относится к области автоматических систем регулирования температуры теплоносителей в системах охлаждения энергетических установок транспортных средств. Регулятор температуры энергетической установки транспортного средства содержит источник электроэнергии переменного тока, управляющий орган, асинхронный двигатель и вентилятор охлаждения. В регуляторе применены два одинаковых асинхронных двигателя с фазными роторами, статорные обмотки которых подключены к источнику электроэнергии, роторные обмотки соединены последовательно посредством резисторов, а валы соединены с валом вентилятора охлаждения. Статор одного из асинхронных двигателей выполнен поворотным и соединен с механизмом поворота, подключенным к управляющему органу. Изобретение обеспечивает повышение кпд и надежности регулятора. 4 ил.

регулятор температуры энергетической установки транспортного   средства, патент № 2241837

регулятор температуры энергетической установки транспортного   средства, патент № 2241837 регулятор температуры энергетической установки транспортного   средства, патент № 2241837 регулятор температуры энергетической установки транспортного   средства, патент № 2241837 регулятор температуры энергетической установки транспортного   средства, патент № 2241837

Формула изобретения

Регулятор температуры энергетической установки транспортного средства, содержащий источник электроэнергии переменного тока, управляющий орган, асинхронный двигатель и вентилятор охлаждения, отличающийся тем, что в нем применены два одинаковых асинхронных двигателя с фазными роторами, статорные обмотки которых подключены к источнику электроэнергии, роторные обмотки соединены последовательно посредством резисторов, а валы соединены с валом вентилятора охлаждения; статор одного из асинхронных двигателей выполнен поворотным и соединен с механизмом поворота, подключенным к управляющему органу.

Описание изобретения к патенту

Регулятор температуры относится к транспортному машиностроению, в частности к области автоматических систем регулирования температуры теплоносителей (высоконагретой детали, воды масла, наддувочного воздуха и др. тепловых двигателей, обмоток электрических машин, трансформаторов, элементов полупроводниковых преобразователей и др.) в системах охлаждения энергетических установок транспортных средств (локомотивов, автомобилей, тракторов и др.).

Любая автоматическая система содержит две функциональные части: объект регулирования и автоматический регулятор [1]. Любой автоматический регулятор содержит две основные соединенные последовательно функциональные части: управляющий орган и исполнительно-регулирующее устройство. В свою очередь, исполнительно-регулирующее устройство содержит две функциональные части: исполнительный механизм и регулирующий орган [2, 3]. В автоматических регуляторах температуры, содержащих в качестве регулирующего органа вентилятор охлаждения, функции исполнительного механизма выполняет привод вентилятора [2, 3]. Известные автоматические регуляторы температуры с электрическим приводом вентилятора на переменном токе содержат источник электроэнергии (обычно тяговый генератор или вспомогательный генератор). Известны автоматические регуляторы температуры энергетических установок транспортных средств с электрическим приводом вентилятора на переменном токе трех видов. Автоматические регуляторы температуры первого вида содержат источник электроэнергии, к которому подключен преобразователь частоты (обычно содержащий звено постоянного тока - выпрямитель), соединенный со статорными обмотками асинхронного двигателя с короткозамкнутым ротором, соединенного с валом вентилятора. К преобразователю температуры подключен управляющий орган, управляющим им по температуре теплоносителя в системе охлаждения энергетической установки транспортного средства [1, 3, 4]. В электрическом приводе вентилятора такого автоматического регулятора температуры реализован принцип частотного управления асинхронным двигателем [6, 8]. Автоматические регуляторы температуры второго вида содержат источник электроэнергии, к которому подключен преобразователь фазного напряжения, соединенный со статорными обмотками специального асинхронного двигателя с двухслойным (или двухпакетным) ротором, соединенным с валом вентилятора. К преобразователю фазного напряжения подключен управляющий орган, управляющим им по температуре энергетической установки транспортного средства. В электрическом приводе вентилятора охлаждения такого автоматического регулятора температуры реализован принцип фазного управления асинхронным двигателем с двухслойным (или двухпакетным) ротором [5, 7]. Автоматические регуляторы температуры третьего вида содержат источник электроэнергии, к которому подключены статорные обмотки асинхронного двигателя с короткозамкнутым ротором, соединенным с валом вентилятора переменной подачи (с поворотными лопастями). К механизму поворота лопастей вентилятора подключен управляющий орган, управляющим им по температуре энергетической установки транспортного средства [3, 8, 9]. Известные автоматические регуляторы температуры энергетической установки транспортного средства имеют существенные недостатки. В автоматических регуляторах температуры с частотным управлением асинхронного двигателя вентилятора охлаждения необходимо применять преобразователи частоты определенных габаритных размеров, массы и стоимости на полную мощность асинхронного двигателя. Это также снижает надежность автоматического регулятора температуры. При частотном управлении асинхронным двигателем с вентиляторной нагрузкой его кпд снижается из-за несинусоидальности питающего напряжения, особенно в зоне частичных нагрузок. В автоматических регуляторах температуры с фазным управлением асинхронным двигателем с двухслойным (или двухпакетным) ротором необходимо применение преобразователя фазного напряжения определенных габаритных размеров, массы и стоимости. Это также снижает надежность автоматического регулятора температуры. При фазном управлении асинхронным двигателем с вентиляторной нагрузкой кпд электрического привода значительно снижается при уменьшении частоты вращения вентилятора. Кроме того, в таком электрическом приводе вентилятора охлаждения мощность асинхронного двигателя на 30-40% меньше номинальной мощности подобного асинхронного двигателя с короткозамкнутым ротором. В автоматических регуляторах температуры с электроприводом вентилятора переменной подачи необходимо применение механизма поворота лопастей, что усложняет конструкцию регулятора. Механизм поворота лопастей увеличивает размеры и массу вентилятора охлаждения, а также стоимость вентилятора и регулятора. Кроме того, при таком способе изменения подачи вентилятора асинхронный двигатель имеет частоту вращения, пропорциональную частоте вращения питающего напряжения, которая может быть постоянной или изменяться в малом диапазоне, что обуславливает при малых тепловых нагрузках системы охлаждения энергетической установки работу вентилятора охлаждения с малыми углами поворота лопастей и низким кпд вентилятора и электрического привода. Предлагаемый автоматический регулятор температуры с электроприводом вентилятора на переменном токе не имеет недостатков известных автоматических регуляторов: в нем не применяется преобразователь частоты или преобразователь фазного напряжения, а также механизм поворота лопастей вентилятора охлаждения. В нем применены два одинаковых асинхронных двигателя с фазными роторами, каждый мощностью, равной половине мощности вентилятора. Статор одного из асинхронных двигателей поворотный, однако, механизм поворота статора намного проще, меньше и дешевле, чем механизм поворота лопастей вентилятора охлаждения. Предлагаемый автоматический регулятор температуры с плавно управляемым электроприводом вентилятора охлаждения на переменном токе содержит следующие основные элементы (фиг.1. Принципиальная блок-схема автоматического регулятора температуры энергетической установки транспортного средства с плавно управляемым электроприводом вентилятора охлаждения на переменном токе): управляющий орган 1, подключенный к механизму поворота статора 2 асинхронного двигателя 3, вал которого соединен с валом второго асинхронного двигателя 4 и с валом вентилятора охлаждения 5, статорные обмотки асинхронных двигателей подключены к источнику электроэнергии 6, а их роторные обмотки соединены последовательно посредством резисторов 7. Автоматический регулятор температуры работает следующим образом. При величине регулируемой температуры tp меньше минимального значения tpmin выходной сигнал управляющего органа 1 Iy имеет минимальное значение Iymin, при этом выходной сигнал механизма поворота статора 2 регулятор температуры энергетической установки транспортного   средства, патент № 2241837 с имеет минимальное значение регулятор температуры энергетической установки транспортного   средства, патент № 2241837 cmin и статор асинхронного двигателя 3 занимает положение (т.е. имеет угол поворота регулятор температуры энергетической установки транспортного   средства, патент № 2241837), при котором частота вращения вентилятора регулятор температуры энергетической установки транспортного   средства, патент № 2241837 W охлаждения 5 равна нулю. Это обусловлено тем, что при согласном положении статоров асинхронных двигателей 3 и 4, когда регулятор температуры энергетической установки транспортного   средства, патент № 2241837 с=0 электрических градусов, ЭДС (Е) в роторных обмотках направлены встречно и Е'р' 2''2=0. При этом ток в роторной цепи равен нулю и у электропривода вентилятора охлаждения вращающий момент (М) равен нулю и регулятор температуры энергетической установки транспортного   средства, патент № 2241837 w=0. При увеличении tp и дальнейшем выполнении tp>tpmin увеличивается выходной сигнал управляющего органа 1 Iy, увеличиваются регулятор температуры энергетической установки транспортного   средства, патент № 2241837 с и регулятор температуры энергетической установки транспортного   средства, патент № 2241837. При этом Е'p>0; в обмотках роторов будет ток I2>0, у электропривода вентилятора М>0, регулятор температуры энергетической установки транспортного   средства, патент № 2241837 W>0, увеличивается подача вентилятора охлаждения GW. Процесс увеличения сигналов tp, I y, регулятор температуры энергетической установки транспортного   средства, патент № 2241837 c, регулятор температуры энергетической установки транспортного   средства, патент № 2241837, E'p, I2 и регулятор температуры энергетической установки транспортного   средства, патент № 2241837 W будет продолжаться до тех пор, пока не наступит равновесный тепловой режим в системе охлаждения энергетической установки. При увеличении регулятор температуры энергетической установки транспортного   средства, патент № 2241837 от нуля до 90 эл. градусов один из асинхронных двигателей будет работать в генераторном (тормозном) режиме, а второй - в двигательном режиме. При дальнейшем увеличении P и выполнении 90° эл. <регулятор температуры энергетической установки транспортного   средства, патент № 2241837<180° эл. обе активные составляющие I2>0, т.е. оба асинхронных двигателя работают в двигательном режиме, развивая разные моменты. В предельном случае, когда регулятор температуры энергетической установки транспортного   средства, патент № 2241837=180° эл. (это соответствует ±180°/р геометрических, р - число пар полюсов) векторы ЭДС обмоток роторов совпадают и Е' р'2'' 2; двигатели развивают одинаковые моменты, работая как два обычных двигателя. При tp=tpmax сигналы Iу, регулятор температуры энергетической установки транспортного   средства, патент № 2241837 с, регулятор температуры энергетической установки транспортного   средства, патент № 2241837 и регулятор температуры энергетической установки транспортного   средства, патент № 2241837 W максимальны. При этом Р достигает 180°, т.е. статор асинхронного двигателя 3 займет положение, при котором регулятор температуры энергетической установки транспортного   средства, патент № 2241837 wmax, частота вращения регулятор температуры энергетической установки транспортного   средства, патент № 2241837 W из-за резисторов 7 будет меньше синхронной на 6-10%. Электропривод вентилятора охлаждения предлагаемого автоматического регулятора температуры имеет механические характеристики, показанные на фиг. 2. Зависимости вращающего момента электропривода от регулятор температуры энергетической установки транспортного   средства, патент № 2241837 W при разных регулятор температуры энергетической установки транспортного   средства, патент № 2241837 статора асинхронного двигателя 3 (линии 2-8), которые в точке пересечения с характеристикой вентилятора охлаждения (линия 1) отражают установившиеся режимы работы электропривода вентилятора охлаждения. На фиг.3 даны статическая характеристика электропривода вентилятора охлаждения - зависимость регулятор температуры энергетической установки транспортного   средства, патент № 2241837 W от регулятор температуры энергетической установки транспортного   средства, патент № 2241837 (линия 1) и зависимость кпд регулятор температуры энергетической установки транспортного   средства, патент № 2241837 д асинхронных двигателей 3 и 4 от регулятор температуры энергетической установки транспортного   средства, патент № 2241837 (линия 2). Зависимость регулятор температуры энергетической установки транспортного   средства, патент № 2241837 д(регулятор температуры энергетической установки транспортного   средства, патент № 2241837 W) такая же, как у гидрообъемного привода и электрического привода вентилятора охлаждения с фазным управлением асинхронным двигателем. При условии, если статические характеристики управляющего органа 1 и механизма поворота статора 2 линейны, то статическая характеристика автоматического регулятора температуры будет иметь вид, показанный на фиг.4. Таким образом, предлагаемый автоматический регулятор температуры автоматически изменяет регулятор температуры энергетической установки транспортного   средства, патент № 2241837 W (и подачу вентилятора охлаждения) в зависимости от tp при изменении ее в пределах регулирования без использования в нем преобразователя частоты и преобразователя фазного напряжения, специального асинхронного двигателя или механизма поворота лопастей.

Источники информации

1. Луков Н.М. Основы автоматики и автоматизации тепловозов. - М.: Транспорт, 1989.

2. Луков Н.М. Автоматическое регулирование температуры двигателей. - М.: Машиностроение, 1977.

3. Луков Н.М. Автоматическое регулирование температуры двигателей. - М.: Машиностроение, 1995.

4. Булгаков А.А. Частотное управление асинхронными двигателями. - М.: Наука, 1966.

5. Могильников B.C., Олейников А.М. Асинхронный электродвигатель с двухслойным ротором. - М.: Энергия, 1983.

6. Винокуров В.А., Попов Д.А. Электрические машины железнодорожного транспорта. М.: Транспорт, 1986.

7. Захарчук А.С. Экспериментальное исследование тиристорной системы плавного регулирования температуры двигателей с асинхронным мотор-вентилятором с двухслойным ротором. - Л.: ЛИИЖТ, 1976 (Деп. рук., ЦНИИТЭИ МПС, 25.05.76, №343, 76).

8. А.с. 206627 (СССР).

9. А.с. 246165 (СССР).

10. А.с. 4378415 (СССР).

11. Патент ФРГ 2121209.

Класс F01P7/00 Регулирование потока охладителя

охлаждающее устройство для транспортного средства, приводимого в движение двигателем внутреннего сгорания с турбонаддувом -  патент 2524479 (27.07.2014)
устройство и способ для нагрева теплоносителя, циркулирующего в системе охлаждения -  патент 2518764 (10.06.2014)
способ охлаждения компрессора дизеля -  патент 2515583 (10.05.2014)
термостат с электромагнитным управлением -  патент 2514553 (27.04.2014)
устройство для включения вентилятора -  патент 2509221 (10.03.2014)
способ управления расходом охлаждающей жидкости -  патент 2503831 (10.01.2014)
автоматический комбинированный микропроцессорный регулятор температуры тепловой машины с электрическим приводом вентилятора -  патент 2501961 (20.12.2013)
устройство управления для транспортного средства -  патент 2500903 (10.12.2013)
система жидкостного охлаждения тепловой машины -  патент 2493385 (20.09.2013)
автоматический комбинированный микропроцессорный регулятор температуры тепловой машины с механическим приводом вентилятора -  патент 2492335 (10.09.2013)

Класс F02D45/00 Электрическое управление и регулирование, не отнесенные к группам  41/00

устройство управления эффективной мощностью для двигателя внутреннего сгорания и способ управления эффективной мощностью для двигателя внутреннего сгорания -  патент 2526608 (27.08.2014)
устройство управления транспортным средством -  патент 2525368 (10.08.2014)
устройство для диагностики неисправностей расходомера воздуха -  патент 2517197 (27.05.2014)
устройство для диагностики неисправностей расходомера воздуха -  патент 2513991 (27.04.2014)
система управления двигателем -  патент 2481210 (10.05.2013)
способ определения технического состояния двигателя внутреннего сгорания и электронное устройство для его осуществления -  патент 2474715 (10.02.2013)
устройство управления для двигателя внутреннего сгорания -  патент 2451809 (27.05.2012)
устройство определения детонации и способ определения детонации для двигателя внутреннего сгорания -  патент 2442116 (10.02.2012)

устройство управления подачей топлива для управления дизельным двигателем -  патент 2432481 (27.10.2011)
устройство управления для модуля привода транспортного средства -  патент 2431754 (20.10.2011)
Наверх