регулятор температуры энергетической установки транспортного средства
Классы МПК: | F01P7/00 Регулирование потока охладителя F02D45/00 Электрическое управление и регулирование, не отнесенные к группам 41/00 |
Автор(ы): | Луков Н.М. (RU), Космодамианский А.С. (RU), Алейников И.А. (RU) |
Патентообладатель(и): | Российский государственный открытый технический университет путей сообщения (RU) |
Приоритеты: |
подача заявки:
2003-02-19 публикация патента:
10.12.2004 |
Изобретение относится к области автоматических систем регулирования температуры теплоносителей в системах охлаждения энергетических установок транспортных средств. Регулятор температуры энергетической установки транспортного средства содержит источник электроэнергии переменного тока, управляющий орган, асинхронный двигатель и вентилятор охлаждения. В регуляторе применены два одинаковых асинхронных двигателя с фазными роторами, статорные обмотки которых подключены к источнику электроэнергии, роторные обмотки соединены последовательно посредством резисторов, а валы соединены с валом вентилятора охлаждения. Статор одного из асинхронных двигателей выполнен поворотным и соединен с механизмом поворота, подключенным к управляющему органу. Изобретение обеспечивает повышение кпд и надежности регулятора. 4 ил.
Формула изобретения
Регулятор температуры энергетической установки транспортного средства, содержащий источник электроэнергии переменного тока, управляющий орган, асинхронный двигатель и вентилятор охлаждения, отличающийся тем, что в нем применены два одинаковых асинхронных двигателя с фазными роторами, статорные обмотки которых подключены к источнику электроэнергии, роторные обмотки соединены последовательно посредством резисторов, а валы соединены с валом вентилятора охлаждения; статор одного из асинхронных двигателей выполнен поворотным и соединен с механизмом поворота, подключенным к управляющему органу.
Описание изобретения к патенту
Регулятор температуры относится к транспортному машиностроению, в частности к области автоматических систем регулирования температуры теплоносителей (высоконагретой детали, воды масла, наддувочного воздуха и др. тепловых двигателей, обмоток электрических машин, трансформаторов, элементов полупроводниковых преобразователей и др.) в системах охлаждения энергетических установок транспортных средств (локомотивов, автомобилей, тракторов и др.).
Любая автоматическая система содержит две функциональные части: объект регулирования и автоматический регулятор [1]. Любой автоматический регулятор содержит две основные соединенные последовательно функциональные части: управляющий орган и исполнительно-регулирующее устройство. В свою очередь, исполнительно-регулирующее устройство содержит две функциональные части: исполнительный механизм и регулирующий орган [2, 3]. В автоматических регуляторах температуры, содержащих в качестве регулирующего органа вентилятор охлаждения, функции исполнительного механизма выполняет привод вентилятора [2, 3]. Известные автоматические регуляторы температуры с электрическим приводом вентилятора на переменном токе содержат источник электроэнергии (обычно тяговый генератор или вспомогательный генератор). Известны автоматические регуляторы температуры энергетических установок транспортных средств с электрическим приводом вентилятора на переменном токе трех видов. Автоматические регуляторы температуры первого вида содержат источник электроэнергии, к которому подключен преобразователь частоты (обычно содержащий звено постоянного тока - выпрямитель), соединенный со статорными обмотками асинхронного двигателя с короткозамкнутым ротором, соединенного с валом вентилятора. К преобразователю температуры подключен управляющий орган, управляющим им по температуре теплоносителя в системе охлаждения энергетической установки транспортного средства [1, 3, 4]. В электрическом приводе вентилятора такого автоматического регулятора температуры реализован принцип частотного управления асинхронным двигателем [6, 8]. Автоматические регуляторы температуры второго вида содержат источник электроэнергии, к которому подключен преобразователь фазного напряжения, соединенный со статорными обмотками специального асинхронного двигателя с двухслойным (или двухпакетным) ротором, соединенным с валом вентилятора. К преобразователю фазного напряжения подключен управляющий орган, управляющим им по температуре энергетической установки транспортного средства. В электрическом приводе вентилятора охлаждения такого автоматического регулятора температуры реализован принцип фазного управления асинхронным двигателем с двухслойным (или двухпакетным) ротором [5, 7]. Автоматические регуляторы температуры третьего вида содержат источник электроэнергии, к которому подключены статорные обмотки асинхронного двигателя с короткозамкнутым ротором, соединенным с валом вентилятора переменной подачи (с поворотными лопастями). К механизму поворота лопастей вентилятора подключен управляющий орган, управляющим им по температуре энергетической установки транспортного средства [3, 8, 9]. Известные автоматические регуляторы температуры энергетической установки транспортного средства имеют существенные недостатки. В автоматических регуляторах температуры с частотным управлением асинхронного двигателя вентилятора охлаждения необходимо применять преобразователи частоты определенных габаритных размеров, массы и стоимости на полную мощность асинхронного двигателя. Это также снижает надежность автоматического регулятора температуры. При частотном управлении асинхронным двигателем с вентиляторной нагрузкой его кпд снижается из-за несинусоидальности питающего напряжения, особенно в зоне частичных нагрузок. В автоматических регуляторах температуры с фазным управлением асинхронным двигателем с двухслойным (или двухпакетным) ротором необходимо применение преобразователя фазного напряжения определенных габаритных размеров, массы и стоимости. Это также снижает надежность автоматического регулятора температуры. При фазном управлении асинхронным двигателем с вентиляторной нагрузкой кпд электрического привода значительно снижается при уменьшении частоты вращения вентилятора. Кроме того, в таком электрическом приводе вентилятора охлаждения мощность асинхронного двигателя на 30-40% меньше номинальной мощности подобного асинхронного двигателя с короткозамкнутым ротором. В автоматических регуляторах температуры с электроприводом вентилятора переменной подачи необходимо применение механизма поворота лопастей, что усложняет конструкцию регулятора. Механизм поворота лопастей увеличивает размеры и массу вентилятора охлаждения, а также стоимость вентилятора и регулятора. Кроме того, при таком способе изменения подачи вентилятора асинхронный двигатель имеет частоту вращения, пропорциональную частоте вращения питающего напряжения, которая может быть постоянной или изменяться в малом диапазоне, что обуславливает при малых тепловых нагрузках системы охлаждения энергетической установки работу вентилятора охлаждения с малыми углами поворота лопастей и низким кпд вентилятора и электрического привода. Предлагаемый автоматический регулятор температуры с электроприводом вентилятора на переменном токе не имеет недостатков известных автоматических регуляторов: в нем не применяется преобразователь частоты или преобразователь фазного напряжения, а также механизм поворота лопастей вентилятора охлаждения. В нем применены два одинаковых асинхронных двигателя с фазными роторами, каждый мощностью, равной половине мощности вентилятора. Статор одного из асинхронных двигателей поворотный, однако, механизм поворота статора намного проще, меньше и дешевле, чем механизм поворота лопастей вентилятора охлаждения. Предлагаемый автоматический регулятор температуры с плавно управляемым электроприводом вентилятора охлаждения на переменном токе содержит следующие основные элементы (фиг.1. Принципиальная блок-схема автоматического регулятора температуры энергетической установки транспортного средства с плавно управляемым электроприводом вентилятора охлаждения на переменном токе): управляющий орган 1, подключенный к механизму поворота статора 2 асинхронного двигателя 3, вал которого соединен с валом второго асинхронного двигателя 4 и с валом вентилятора охлаждения 5, статорные обмотки асинхронных двигателей подключены к источнику электроэнергии 6, а их роторные обмотки соединены последовательно посредством резисторов 7. Автоматический регулятор температуры работает следующим образом. При величине регулируемой температуры tp меньше минимального значения tpmin выходной сигнал управляющего органа 1 Iy имеет минимальное значение Iymin, при этом выходной сигнал механизма поворота статора 2 с имеет минимальное значение cmin и статор асинхронного двигателя 3 занимает положение (т.е. имеет угол поворота ), при котором частота вращения вентилятора W охлаждения 5 равна нулю. Это обусловлено тем, что при согласном положении статоров асинхронных двигателей 3 и 4, когда с=0 электрических градусов, ЭДС (Е) в роторных обмотках направлены встречно и Е'р=Е' 2+Е''2=0. При этом ток в роторной цепи равен нулю и у электропривода вентилятора охлаждения вращающий момент (М) равен нулю и w=0. При увеличении tp и дальнейшем выполнении tp>tpmin увеличивается выходной сигнал управляющего органа 1 Iy, увеличиваются с и . При этом Е'p>0; в обмотках роторов будет ток I2>0, у электропривода вентилятора М>0, W>0, увеличивается подача вентилятора охлаждения GW. Процесс увеличения сигналов tp, I y, c, , E'p, I2 и W будет продолжаться до тех пор, пока не наступит равновесный тепловой режим в системе охлаждения энергетической установки. При увеличении от нуля до 90 эл. градусов один из асинхронных двигателей будет работать в генераторном (тормозном) режиме, а второй - в двигательном режиме. При дальнейшем увеличении P и выполнении 90° эл. <<180° эл. обе активные составляющие I2>0, т.е. оба асинхронных двигателя работают в двигательном режиме, развивая разные моменты. В предельном случае, когда =180° эл. (это соответствует ±180°/р геометрических, р - число пар полюсов) векторы ЭДС обмоток роторов совпадают и Е' р=Е'2+Е'' 2; двигатели развивают одинаковые моменты, работая как два обычных двигателя. При tp=tpmax сигналы Iу, с, и W максимальны. При этом Р достигает 180°, т.е. статор асинхронного двигателя 3 займет положение, при котором wmax, частота вращения W из-за резисторов 7 будет меньше синхронной на 6-10%. Электропривод вентилятора охлаждения предлагаемого автоматического регулятора температуры имеет механические характеристики, показанные на фиг. 2. Зависимости вращающего момента электропривода от W при разных статора асинхронного двигателя 3 (линии 2-8), которые в точке пересечения с характеристикой вентилятора охлаждения (линия 1) отражают установившиеся режимы работы электропривода вентилятора охлаждения. На фиг.3 даны статическая характеристика электропривода вентилятора охлаждения - зависимость W от (линия 1) и зависимость кпд д асинхронных двигателей 3 и 4 от (линия 2). Зависимость д( W) такая же, как у гидрообъемного привода и электрического привода вентилятора охлаждения с фазным управлением асинхронным двигателем. При условии, если статические характеристики управляющего органа 1 и механизма поворота статора 2 линейны, то статическая характеристика автоматического регулятора температуры будет иметь вид, показанный на фиг.4. Таким образом, предлагаемый автоматический регулятор температуры автоматически изменяет W (и подачу вентилятора охлаждения) в зависимости от tp при изменении ее в пределах регулирования без использования в нем преобразователя частоты и преобразователя фазного напряжения, специального асинхронного двигателя или механизма поворота лопастей.
Источники информации
1. Луков Н.М. Основы автоматики и автоматизации тепловозов. - М.: Транспорт, 1989.
2. Луков Н.М. Автоматическое регулирование температуры двигателей. - М.: Машиностроение, 1977.
3. Луков Н.М. Автоматическое регулирование температуры двигателей. - М.: Машиностроение, 1995.
4. Булгаков А.А. Частотное управление асинхронными двигателями. - М.: Наука, 1966.
5. Могильников B.C., Олейников А.М. Асинхронный электродвигатель с двухслойным ротором. - М.: Энергия, 1983.
6. Винокуров В.А., Попов Д.А. Электрические машины железнодорожного транспорта. М.: Транспорт, 1986.
7. Захарчук А.С. Экспериментальное исследование тиристорной системы плавного регулирования температуры двигателей с асинхронным мотор-вентилятором с двухслойным ротором. - Л.: ЛИИЖТ, 1976 (Деп. рук., ЦНИИТЭИ МПС, 25.05.76, №343, 76).
8. А.с. 206627 (СССР).
9. А.с. 246165 (СССР).
10. А.с. 4378415 (СССР).
11. Патент ФРГ 2121209.
Класс F01P7/00 Регулирование потока охладителя
Класс F02D45/00 Электрическое управление и регулирование, не отнесенные к группам 41/00