способ разделения фракций углеводородов с5
Классы МПК: | C07C7/08 экстрактивной |
Автор(ы): | |
Патентообладатель(и): | Дядюрин Александр Павлович (RU) |
Приоритеты: |
подача заявки:
2002-07-29 публикация патента:
10.01.2005 |
Использование: нефтехимия, нефтепеработка. Сущность: углеводороды С5 разной степени насыщенности подвергают разделению экстрактивной ректификацией в колонне экстрактивной ректификации с использованием диметилформамида в качестве экстрагента с дальнейшей десорбцией из последнего пентенов или пентадиенов и подачей десорбированного экстрагента в колонну экстрактивной ректификации. При этом перед подачей в колонну часть горячего десорбированного экстрагента подают на смешение с исходными углеводородами, смешение проводят в жидкой фазе при интенсивном перемешивании и полученную смесь вводят в колонну в жидком виде. Технический результат: снижение энергозатрат. 1 табл., 2 ил.
Формула изобретения
Способ разделения углеводородов C5 разной степени насыщенности экстрактивной ректификацией в колонне экстрактивной ректификации с использованием диметилформамида в качестве экстрагента с дальнейшей десорбцией из последнего пентенов или пентадиенов и подачей десорбированного экстрагента в колонну экстрактивной ректификации, отличающийся тем, что перед подачей в колонну часть горячего десорбированного экстрагента подают на смешение с исходными углеводородами, смешение проводят в жидкой фазе при интенсивном перемешивании и полученную смесь вводят в колонну в жидком виде.
Описание изобретения к патенту
Изобретение относится к разделению углеводородов C5 разной степени насыщенности, в частности пентанов, пентенов и пентадиенов, содержащихся во фракциях различного происхождения (дегидрирования, пиролиза углеводородов и т.д.), в присутствии полярных органических экстрагентов и может найти широкое применение в промышленности синтетического каучука в производстве основного мономера - изопрена.
Известен способ разделения углеводородов C5, полученных дегидрированием углеводородного сырья путем последовательного отделения от целевой углеводородной фракции легких (C1-C4) и тяжелых (С6 и выше) углеводородов ректификацией с последующим выделением изоамиленов и (или изопрена) экстрактивной ректификацией [1].
Наиболее близким к изобретению по технической сущности является способ разделения фракций углеводородов C5 , заключающийся в отделении легких и тяжелых углеводородов в колоннах обычной ректификации и разделении остатка в присутствии полярного органического экстрагента (диметилформамида) путем двухстадийной экстрактивной ректификации (э.р.) и десорбции [2]. Полученные таким образом C5 фракции: изопентан - изоамиленовая после первой стадии дегидрирования – направляют на разделение экстрактивной ректификацией.
Изопентан - изоамиленовую фракцию разделяют на изопентан, возвращаемый на первую стадию дегидрирования, и изоамиленовую фракцию, направляемую на вторую стадию дегидрирования. Изоамилен - изопреновую фракцию разделяют на возвратные изоамилены, возвращаемые на вторую стадию дегидрирования, и изопрен, направляемый на очистку. При этом содержание изоамиленов в возвратном изопентане составляет 1,8 вес.%, а содержание изопрена в возвратных изоамиленах составляет до двух вес.%. Концентрация экстрагента (ДМФА) на тарелках на обеих стадиях э.р. достигает 60-80 вес.%.
Ввиду высокой концентрации экстрагента температура в кубах колонн достигает 100 и более °С, что в сочетании с использованием углеводородного рецикла приводит к образованию термополимеров (образование которых начинается на поверхности конденсации жидкости) [3], а также к необходимости использовать для обогрева кубов колонн пара с высокой температурой.
ЦЕЛЬЮ ИЗОБРЕТЕНИЯ ЯВЛЯЕТСЯ:
Снижение расхода энергоресурсов и повышение эффективности процесса разделения за счет изменения способа нагрева исходных фракций углеводородов C5.
Поставленная цель достигается тем, что часть горячего десорбированного экстрагента (ДМФА) с температурой не менее 124°С смешивают с исходной фракцией С5 в жидком состоянии в соотношении 3,0:1,0 на первой и второй стадии э.р. при интенсивном перемешивании образующихся смесей под давлением 6-6,5 ата перед вводом в колонну. Недостающий до соотношения 4-8:1 с сырьем ДМФА подается на верх колонн.
В производстве разделения фракций углеводородов C5 используют способ нагрева и испарения углеводородов в теплообменниках водяным паром, недостатком которого является отложение полимеров на трубках аппаратов и необходимость их удаления при снижении эффективности их работы.
Способ нагрева и испарения углеводородов C5 горячим десорбированным экстрагентом ДМФА в теплообменниках имеет уже три недостатка, так как на стенках теплообменников с одной стороны происходит отложение смол из экстрагента, а с другой отложение термополимеров из сырья при увеличенной поверхности теплообмена, что еще более усложняет проблему чистки теплообменников (испарителей).
Наиболее эффективным является предлагаемый способ нагрева сырья, в котором вторичное тепло горячего десорбированного экстрагента ДМФА используется в большей степени, что позволяет полностью исключить использование водяного пара на нагрев и испарение сырья и аппараты-испарители. Предлагаемый способ лишен недостатков используемых способов нагрева сырья и заключается в следующем.
Для нагрева (без испарения до ввода в колонну) исходную фракцию углеводородов С5 необходимо подавать на прямое смешивание (типа жидкость - жидкость) с горячим экстрагентом ДМФА. Сырье необходимо подавать на смешивание через конусную головку, снабженную большим количеством отверстий диаметром до 4 мм (так как сырье всегда чище по сравнению с экстрагентом ДМФА). Экстрагент для нагрева исходной фракции углеводородов С5 необходимо подавать в таком количестве, чтобы температура образовавшейся смеси оказалась в пределах 100°С и равна количеству тепла вносимого в колонну испаренным сырьем. При этом за счет интенсивного перемешивания жидкой смеси произойдет процесс жидкостной экстракции под давлением до 6,5 ата и большая часть исходной фракции углеводородов С5 оказывается связанной с экстрагентом ДМФА.
Согласно характеру насыщаемости ДИМЕТИЛФОРМАМИДОМ пентадиены стоят впереди пентенов, а пентены стоят впереди пентанов и при вводе жидкой смеси в колонну э.р. и снижении давления до 2 ата и ниже испаряться сначала начинают те компоненты углеводородов C5, которые имеют коэффициент относительной летучести наибольший, т.е. получается то, что в паровой фазе на тарелке ввода смеси в колоннах э.р. первой стадии содержится меньшее количество пентенов, а в колоннах э.р. второй стадии в паровой фазе выше тарелки ввода содержится меньшее количество пентадиенов, что и приводит к снижению потерь их [4-6].
На фиг. 1 и 2 представлены схемы осуществления предлагаемого способа.
ПРИМЕР 1
Определить необходимое количество тепла для нагрева 500 грамм углеводородов С5 до 100°С и необходимое количество экстрагента ДМФА для нагрева способом смешивания при температуре ДМФА не менее 124°С. Согласно формуле теплового баланса имеем:
Q=Gx·Cx(t2 -t1)-Gг·Cг·(T1-T2),где:
Gx и Gг - количество нагреваемой (холодной) и горячей жидкости, г;
Сх и Cг - средняя теплоемкость холодной и горячей жидкости, кал/г °С;
Т1 и Т 2 - начальная и конечная температура греющей жидкости, °С;
t1 и t2 - начальная и конечная температура нагреваемой жидкости, °С.
Тогда: Qi=Gi·Ci(t 2-t1)=500·0,4·(100-10)=18000 кал.
G2=Qi/C2·(T1 -T2)=18000/0,5·(124-100)=1500 г.
ПРИМЕР 2
В аппарат емкостью 3 л заливается 1500 г ДМФА, включается мешалка и производится нагрев до температуры не менее 124°С. Обогрев отключается и в аппарат вводится 500 г углеводородов С5 первой стадии дегидрирования. Производится перемешивание смеси в течение трех минут. В аппарате устанавливается температура 98°С и давление 4 ата. При остановленной мешалке и трех минутном отстое отбирается жидкая проба, а паровая фаза отбирается до снижения давления в аппарате до 2 ата. В ловушку собирается 39,7 г углеводородов C5. Составы жидкой и паровой фазы проанализированы и сведены в таблицу 1.
ПРИМЕР 3
В аппарат емкостью 3 л заливается 1500 г ДМФА, включается мешалка и производится нагрев до температуры не менее 124°С. Обогрев отключается и вводится 500 г углеводородов C5 второй стадии дегидрирования. Производится перемешивание (60 оборотов в минуту) мешалкой в течение трех минут. В аппарате устанавливается температура 100°С и давление 3,6 ата. Без остановки мешалки отбирается жидкая и паровая фазы. В паровую фазу переходит 18 г продукта. После остановки мешалки и снижении давления до 2 ата отбирается жидкая проба. Составы проб проанализированы и сведены в таблицу 1.
Таким образом, достигается экономия тепла водяного пара и происходит связывание целевых продуктов в жидкой фазе до ввода в колонны э.р.
ПРИМЕР 4
Сконденсированная и выделенная изопентан - изоамиленовая фракция направляется на разделение по схеме, приведенной на фигуре 1. Углеводороды C 5 первой стадии дегидрирования изопентана по линии 1 подаются на нагрев способом прямого смешивания с горячим десорбированным экстрагентом (ДМФА), который подается по линии 9 с температурой не менее 124°С. Полученная жидкая смесь в соотношении 1:3 с температурой 100°С после перемешивания в линии 2 подается в колонну 3 в карман 18 тарелки. На 48 (56) тарелку по линии 4 подается ДМФА остальной до соотношения 4-6:1 и температурой 50°С.
Колонна 3 имеет 150 колпачковых тарелок и работает с флегмовым числом 1,2. Температура верха колонны 44°С, а в кубе - 136°С. С верха колонны 3 по линии 5 отбирают изопентан с содержанием изоамиленов до 1 вес.%. Из куба колонны 3 по линии 6 отбирают насыщенный пентен - пентадиенами экстрагент и подают в колонну 7 на десорбцию ДМФА. С верха колонны 7 по линии 8 отбирают пентен - пентадиеновую фракцию и направляют на вторую стадию разделения. Из куба колонны 7 десорбированный экстрагент ДМФА снова подают по линии 9 на прямое смешивание с сырьем в соотношении 3:1, а остальной ДМФА по линии 4 поступает снова на процесс разделения.
ПРИМЕР 5
Сконденсированная и выделенная изоамилен - изопреновая фракция первой стадии дегидрирования и изоамилен - изопреновая фракция второй стадии дегидрирования направляются в соотношении 1:2 или 1:1 на разделение по схеме, приведенной на фигуре 2.
Сырье (смесь бедного+богатого сырья в соотношении 1:1) подается по линии 1 на нагрев способом прямого смешивания с горячим десорбированным экстрагентом ДМФА в соотношении 1:3 с температурой не менее 124°С, который поступает по линии 9. Полученная жидкая смесь по линии 2 с температурой 100°С подается в колонну 3 на 85 (55) карман тарелки. При встрече с верхним, жидким потоком температура смеси снижается от 100°С до 72°С. На 120 (105) тарелку по линии 4 подается экстрагент ДМФА остальной до соотношения с вводимым сырьем 5-8:1 и температурой 50°С. Колонна 3 имеет 150 колпачковых тарелок и работает с флегмовым числом 1,6.
Температура верха колонны 3 равна 37°С, а в кубе колонны до 120°С (в зависимости от подачи рециклового изопрена). С верха колонны 3 по линии 5 отбирают пентеновую фракцию с содержанием изопрена до 0,5 вес.%. Из куба колонны 3 отбирают насыщенный пентадиенами экстрагент ДМФА и по линии 6 направляют в десорбционную колонну 7. С верха колонны 7 по линии 8 отбирают изопрен - сырец, который далее направляют на четкую ректификацию. Из куба колонны 7 по линии 9 выводят десорбированный ДМФА, который снова направляют в процесс смешивания, нагревания и связывания целевых компонентов исходного сырья, а по линии 4 на верх колонны 3.
Использование предлагаемого способа нагрева сырья позволяет:
1. За счет изменения способа нагрева исходного сырья исключить из схемы испарители сырья и использование водяного пара на испарение сырья. Это приводит к экономии тепловой энергии не только на стадии испарения сырья, но и на стадии разделения в колоннах э.р.
2. Снизить потери изоамиленов с откачиваемым изопентаном, а также снизить потери изопрена с откачиваемыми изоамиленами как на стадии нагрева сырья, так и на стадии разделения в колоннах э.р.
3. Нагрев экстрагентом ДМФА сырья новым способом прямого смешивания приводит к насыщению экстрагента целевыми компонентами сырья и связыванию их до ввода в колонну э.р., что позволяет поднять тарелку питания на более высокую на первой стадии и снизить тарелку питания на второй стадии, а также разгрузить колонны э.р. от избытка верхнего продукта (флегмы) с меньшими энергозатратами, что и приводит к улучшению результатов.
Используемые источники информации.
1. Огородников С.К., Идлис Г.С. sec;Производство изопрена.sec; Л.: Химия. 1973, с.129.
2. Авторское свидетельство SU 803343 А1, 20.12.2000.
3. Авторское свидетельство №642322, 1979.
4. а) Огородников С.К., Коган В.В., Немцов М.С. sec;Равновесие между жидкостью и паром смеси диметилформамид - изопрен - триметилэтилен.sec; ЖПХ 34, №11, 2441 (1961).
б) Карев В.Г., Баранов А.В. Сборник материалов конференции Сибирского технологического института по итогам работ 1962 г. Выпуск 2, Красноярск, 49 (1963) sec;Равновесие между жидкостью и паром диметилформамид-изопентан-триметилэтиленsec;.
5. Павлов К.Ф., Романков П.Г., Носков А.А. sec;Примеры и задачи по курсу процессов и аппаратов химической технологииsec;. Л.: Химия. 1970, с. 212.
6. Павлов С.Ю. и другие. Выделение изопрена из фракции C5 пиролиза бензина. sec;Химическая промышленность.sec; 1971, №4.
ТАБЛИЦА 1 СОСТАВЫ ПРОБ ИЗ ОПЫТА №1 и ОПЫТА №2 вес% | ||||||||
№п/п | Наименование продукта | Проба 1 | Проба 2 | Проба 3 | ДМФА | Проба 4 | Проба 5 | Проба 6 |
Кат. 1 ст. | ДМФА | Ловушка 1 | Десорбирован. | Кат 2ст. | ДМФА | Ловушка 2 | ||
сырье | насыщенное | сырье | насыщенное | |||||
1. | Углеводороды С4 | 0,3 | 0,02 | 2,79 | 0,5 | 0,09 | 3,9 | |
2. | Изопентан | 65,5 | 14,86 | 91,4 | 0,9 | 0,08 | 16,3 | |
3. | 2Метил - 1бутен | 2,7 | 0,68 | 0,60 | 3,9 | 0,93 | 5,9 | |
4. | нПентан | 3,1 | 0,73 | 3,02 | 2,8 | 0,67 | 4,6 | |
5. | 1Пентен | 0,5 | 0,12 | 0,25 | 1,8 | 0,42 | 3,9 | |
6. | 3Метил - 1бутен | 8,8 | 2,23 | 0,63 | 18,9 | 4,47 | 33,3 | |
7. | 2Пентен | 1,9 | 0,47 | 0,5 | 4,8 | 1,14 | 7,3 | |
8. | 2Метил - 2бутен | 14,5 | 3,69 | 0,5 | 35,8 | 8,83 | 22,7 | |
9. | Изопрен | 2 | 0,51 | 0,2 | 27,4 | 6,9 | 1,5 | |
10. | 1,3Пентадиен | 0,4 | 0,1 | 0,1 | 1,8 | 0,45 | 0,1 | |
11. | Циклопендадиен | 0,2 | 0,05 | 0,02 | 1 | 0,25 | ||
12. | Углеводороды С6 | 0,1 | 0,02 | 0,4 | 0,1 | |||
13. | ДМФА | 76,52 | 75,67 | 0,5 | ||||
Величина пробы | 500,0 | 1960,3 | 39,7 | 1500,0 | 500,0 | 1982,0 | 18,0 |