металломатричный композит

Классы МПК:C22C1/05 смеси металлического порошка с неметаллическим
C22C1/10 сплавы с неметаллическими составляющими
C22C9/00 Сплавы на основе меди
C22C26/00 Сплавы, содержащие алмаз
Автор(ы):,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) (RU)
Приоритеты:
подача заявки:
2003-03-05
публикация патента:

Изобретение относится к композиционным материалам, в частности к металло-матричным композитам. Может применяться в электротехнике, машиностроении, электронике и др. Предложен металло-матричный композит, содержащий медную матрицу, упрочняющие элементы из карбида кремния и упрочняющие частицы нано-алмазного порошка. Отношение объемного содержания элементов из карбида кремния к объемному содержанию частиц нано-алмазного порошка составляет 0,5-5. Техническим результатом является повышение твердости, изностойкости и прочностных характеристик. 2 з.п. ф-лы.

Формула изобретения

1. Металломатричный композит, содержащий медную матрицу и упрочняющие элементы из карбида кремния, отличающийся тем, что он дополнительно содержит упрочняющие частицы наноалмазного порошка, при этом отношение объемного содержания упрочняющих элементов из карбида кремния к объемному содержанию упрочняющих частиц наноалмазного порошка составляет 0,5-5.

2. Металломатричный композит по п.1, отличающийся тем, что средний характерный размер упрочняющих элементов из карбида кремния в 10-10000 раз превышает средний характерный размер упрочняющих частиц наноалмазного порошка.

3. Металломатричный композит по п.1, отличающийся тем, что наноалмазный порошок размещен в приповерхностной зоне на глубине 0,5-500 средних характерных размеров упрочняющих элементов из карбида кремния.

Описание изобретения к патенту

Изобретение относится к композиционным материалам, а именно к такому их виду как металло-матричные композиты. Данный материал может применяться в различных отраслях техники, например в электротехнике, машиностроении (включая автомобилестроение), электронике и др.

Известны металло-матричные композиты, состоящие из алюминиевой матрицы и усиливающих элементов в виде порошка карбида кремния [Axel Kolsgaard, Stig Brusethaug Settling of SiC particles in an AISi7Mg melt. Materials Science and Engineering, A173 (1993) 213-219]. Однако такой металло-матричный композит не обладает максимально высокой электропроводностью.

Известен также металло-матричный композит, содержащий медную матрицу и упрочняющие элементы из карбида кремния (патент РФ RU 2017852 С1, МПК 7 С 22 С 32/00, опубликованный 15.08.1994, 3 стр.). Такой металло-матричный композит обладает повышенной прочностью и повышенной износостойкостью по сравнению с обычной медью, но износ все-таки является заметным, а твердость и прочность не находятся на достаточно высоком уровне.

Задачей изобретения является устранение указанных недостатков и достижение технического результата, заключающегося в повышении прочностных характеристик, твердости и износостойкости металло-матричного композита за счет увеличения количества упрочняющих элементов высокой твердости и чрезвычайно малого размера.

Указанный технический результат достигается тем, что металло-матричный композит, содержащий медную матрицу и упрочняющие элементы из карбида кремния, согласно изобретению, дополнительно содержит упрочняющие частицы нано-алмазного порошка, при этом отношение объемного содержания упрочняющих элементов из карбида кремния к объемному содержанию упрочняющих частиц нано-алмазного порошка составляет 0,5-5.

Согласно изобретению, возможно, что металло-матричный композит содержит упрочняющие частицы из карбида кремния, средний характерный размер которых в 10-10000 раз превышает средний характерный размер упрочняющих частиц нано-алмазного порошка.

Согласно изобретению, возможно, что в металло-матричном композите нано-алманый порошок размещен в приповерхностной области на глубине 0,5-500 средних характерных размеров упрочняющих частиц из карбида кремния.

Металло-матричный композит, содержащий медную матрицу и упрочняющие элементы из карбида кремния, согласно изобретению дополнительно содержит упрочняющие частицы нано-алмазного порошка, при этом отношение объемного содержания упрочняющих элементов из карбида кремния к объемному содержанию упрочняющих частиц нано-алмазного порошка составляет 0,5-5. Нано-алмазный порошок вследствие высокой твердости отдельных частиц и их малых размеров обеспечивает высокую износостойкость. Малые размеры нано-алмазных частиц не позволяют при трении зацепить их и выдернуть их из матрицы. Комбинация частиц карбида кремния и нано-алмазных частиц позволяет получить равномерно прочную и твердую поверхность изделия. Отсутствуют участки мягкой матрицы на поверхности изделия. Отношение объемного содержания упрочняющих частиц из карбида кремния к объемному содержанию упрочняющих частиц нано-алмазного порошка выбирается равным 0,5-5 по следующим соображениям. Эти соотношения относятся к тем участкам, в которых присутствуют оба компонента. При меньшем соотношении не достигается требуемая прочность и твердость материала, что не позволяет выравнить свойства материала по поверхности. Увеличение содержания нано-алмазного порошка приводит к появлению участков контакта между нано-алмазными частицами и между карбидом кремния и алмазными частицами без металлической прослойки, что снижает прочность и износостойкость.

Металло-матричный композит содержит упрочняющие частицы из карбида кремния со средним характерным размером в 10-10000 раз больше среднего характерного размера упрочняющих частиц нано-алмазного порошка. Если разница в размерах будет менее 10, то пропадет эффект от применения нано-порошка из алмазов, так как размеры частиц станут соизмеримыми. При увеличении размера частиц карбида кремния более чем в 10000 размеров нано-алмазных частиц, неоднородность свойств на поверхности становится настолько высокой, что применение нано-алмазных порошков становится неэффективным.

В металло-матричном композите нано-алманый порошок может быть размещен в приповерхностной области на глубине 0,5-500 средних характерных размеров упрочняющих частиц из карбида кремния. Так как нано-алмазный порошок имеет высокую стоимость, а требуется он в основном для выравнивания свойств материала по поверхности, то целесообразным является применение его только в приповерхностных слоях. Если этот слой будет меньше 0,5 среднего характерного размера частицы карбида кремния, то эффективность его применения будет низкой, так как упрочнения слоя металла, удерживающего частицу, не произойдет. Нано-алмазные частицы, находящиеся на глубине более 500 средних характерных размеров упрочняющих частиц из карбида кремния, не оказывают воздействия на распределение прочностных характеристик на поверхности.

Пример 1

Металло-матричный композит, содержащий медную матрицу и усиливающие элементы в виде частиц карбида кремния и нано-алмазного порошка, был изготовлен методами порошковой металлургии с применением нано-технологий. Усиливающими элементами служили частицы карбида кремния со средним размером 50 мкм, процентное содержание которых составляло 10% (объемных), и частицы нано-алмазного порошка размером 5 нм, процентное содержание которых составляло 20% (объемных). То есть размер частиц карбида кремния превышает размер частиц нано-алмазного порошка в 10000 раз, а отношение объемного содержания упрочняющих частиц из карбида кремния к объемному содержанию упрочняющих частиц нано-алмазного порошка равно 0,5. Матрица была выполнена из меди Мо. Для получения матрицы применили нано-порошок меди размером 150 нм, полученный методом взрыва проволоки. Металло-матричный композит обладает высокими прочностными характеристиками и высокой износостойкостью.

Пример 2

Металло-матричный композит, содержащий медную матрицу и усиливающие элементы в виде коротких волокон из карбида кремния и нано-алмазного порошка, был изготовлен методами порошковой металлургии с применением нано-технологий. Усиливающими элементами служили короткие волокна диаметром 70 нм из карбида кремния, процентное содержание которых составляло 25% (объемных), и частицы нано-алмазного порошка размером 7 нм, процентное содержание которых составляло 5% (объемных). То есть характерный размер (диаметр) упрочняющих элементов из карбида кремния превышает размер частиц нано-алмазного порошка в 10 раз, а отношение объемного содержания упрочняющих частиц из карбида кремния к объемному содержанию упрочняющих частиц нано-алмазного порошка равно 5. Матрица была выполнена из меди Мо. Для получения матрицы применили нано-порошок меди размером 150 нм, полученный методом взрыва проволоки. Металло-матричный композит обладает высокими прочностными характеристиками и высокой износостойкостью.

Пример 3

Металло-матричный композит, содержащий медную матрицу и усиливающие элементы в виде частиц карбида кремния и нано-алмазного порошка, был изготовлен методами порошковой металлургии с применением нано-технологий. Усиливающими элементами служили распределенные по всему объему материала частицы карбида кремния со средним размером 10 мкм, процентное содержание которых составляло 15% (объемных), и частицы нано-алмазного порошка размером 5 нм. Частицы нано-алмазного порошка размещались только в приповерхностном слое толщиной 5 мм при процентном содержании 15% (объемных). То есть размер частиц карбида кремния превышает размер частиц нано-алмазного порошка в 2000 раз; отношение объемного содержания упрочняющих частиц из карбида кремния к объемному содержанию упрочняющих частиц нано-алмазного порошка равно 1; а глубина приповерхностной области составляет 500 средних характерных размеров упрочняющих частиц из карбида кремния. Матрица была выполнена из меди Мо. Металло-матричный композит обладает высокими прочностными характеристиками и высокой износостойкостью.

Класс C22C1/05 смеси металлического порошка с неметаллическим

спеченная твердосплавная деталь и способ -  патент 2526627 (27.08.2014)
композиционный электроконтактный материал на основе меди и способ его получения -  патент 2525882 (20.08.2014)
способ получения поликристаллического композиционного материала -  патент 2525005 (10.08.2014)
шихта для изготовления материала для сильноточных электрических контактов и способ изготовления материала -  патент 2523156 (20.07.2014)
твердосплавное тело -  патент 2521937 (10.07.2014)
способ получения беспористого карбидочугуна для изготовления выглаживателей -  патент 2511226 (10.04.2014)
способ получения композиционного материала -  патент 2509818 (20.03.2014)
порошковый композиционный материал -  патент 2509817 (20.03.2014)
спеченный материал для сильноточного скользящего электроконтакта -  патент 2506334 (10.02.2014)
наноструктурный композиционный материал на основе чистого титана и способ его получения -  патент 2492256 (10.09.2013)

Класс C22C1/10 сплавы с неметаллическими составляющими

композиционный электроконтактный материал на основе меди и способ его получения -  патент 2525882 (20.08.2014)
литой композиционный материал на основе алюминия и способ его получения -  патент 2516679 (20.05.2014)
способ модифицирования чугуна -  патент 2515158 (10.05.2014)
способ модифицирования чугуна с шаровидным графитом -  патент 2500824 (10.12.2013)
способ получения композиционного материала на основе сплава алюминий-магний с содержанием нанодисперсного оксида циркония -  патент 2499849 (27.11.2013)
литой композиционный сплав и способ его получения -  патент 2492261 (10.09.2013)
способ упрочнения легких сплавов -  патент 2487186 (10.07.2013)
способ изготовления изделий из гранулируемых жаропрочных никелевых сплавов -  патент 2477670 (20.03.2013)
композиционный материал для электротехнических изделий -  патент 2466204 (10.11.2012)
способ получения порошковой композиции на основе карбосилицида титана для ионно-плазменных покрытий -  патент 2458168 (10.08.2012)

Класс C22C9/00 Сплавы на основе меди

Класс C22C26/00 Сплавы, содержащие алмаз

Наверх