материал для рафинирования стали
Классы МПК: | C22C35/00 Сплавы (лигатуры) для легирования железа или стали C21C7/064 удаление фосфора; удаление серы |
Автор(ы): | Наконечный Анатолий Яковлевич (UA), Урцев В.Н. (RU), Хабибулин Д.М. (RU), Аникеев С.Н. (RU) |
Патентообладатель(и): | ООО "Сорби стил" (RU) |
Приоритеты: |
подача заявки:
2003-06-19 публикация патента:
27.01.2005 |
Изобретение относится к области черной металлургии и может быть использовано в сталеплавильном производстве. Материал содержит, мас.%: витеритовый концентрат 40-42, алюминий 38-40, известь 5-12, магний 6-8, титан 1-2. Изобретение позволяет повысить рафинирующую способность материала за счет модифицирования в расплаве металла низковалентных соединений серы и фосфора, что повышает качество стали. 1 табл.
Формула изобретения
Материал для рафинирования стали, содержащий барийсодержащий концентрат и алюминий, отличающийся тем, что он дополнительно содержит магний, титан и известь, а в качестве барийсодержащего концентрата содержит витеритовый концентрат при следующем соотношении компонентов, мас.%:
Витеритовый концентрат 40-42
Алюминий 38-40
Известь 5-12
Магний 6-8
Титан 1-2
Описание изобретения к патенту
Изобретение относится к области черной металлургии и может быть использовано в сталеплавильном производстве.
Известен комплексный модификатор (а.с. СССР №1382868, кл. С 22 С 35/00, опубл. 23.03.1988 г.), содержащий ниобий, цирконий, ванадий, бор, кальций, алюминий, кремний, титан, марганец, редкоземельные металлы, молибден, азот и железо при следующем соотношении компонентов, мас.%:
Ниобий 7-20
Цирконий 8-15
Ванадий 5-15
Бор 0,1-0,3
Кальций 0,8-10
Алюминий 1-10
Кремний 7-10
Титан 1-5
Марганец 15-25
Редкоземельные металлы 6-12
Молибден 2-20
Азот 0,5-2
Железо Остальное.
Наличие в известном комплексном модификаторе кремния препятствует модифицированию низковалентных соединений серы и фосфора, что приводит к ухудшению качества стали. Содержание в комплексном модификаторе активных элементов - кальция и редкоземельных металлов в количестве, вдвое превышающем содержание менее активных элементов - раскислителей (алюминия и кремния), приводит в процессе обработки металла к образованию тугоплавких трудноудаляемых оксидов редкоземельных элементов, что ухудшает качество готовой стали из-за повышенной ее загрязненности.
Наиболее близким аналогом заявляемого изобретения является брикет для раскисления стали и чугуна (Патент РФ №2023044, кл. С 22 С 35/00, опубл. 15.11.1994 г.), содержащий барийсодержащий материал в виде витеритстронцианитового концентрата, обожженного при 1200-1250 К, порошок алюминия, 65%-ный ферросилиций и плавиковый шпат при следующем соотношении компонентов, мас.%:
Продукт обжига витеритстронцианитового концентрата 53-55
Порошок алюминия 7-12
Порошок 65%-ного ферросилиция 29-32
Плавиковый шпат 2-3
Связующее 2-4
Признаки ближайшего аналога, совпадающие с существенными признаками заявляемого изобретения: наличие в составе материала для рафинирования стали барийсодержащего концентрата и алюминия.
Наличие в составе известного брикета для раскиления стали и чугуна ферросилиция препятствует модифицированию в расплаве металла низковалентных соединений серы и фосфора, что приводит к повышенному содержанию в готовой стали серы и фосфора и ухудшает качество стали. Кроме того, в результате металлотермической реакции восстановления бария и стронция образуются прочные силициды BaSi2 и SrSi2, что приводит к снижению активности элементов - бария и стронция, имеющих большое сродство к сере и фосфору. В результате создаются неблагоприятные условия для обеспечения десульфурации и дефосфорации, а использование известного брикета сводится только к раскислению стали с образованием трудно удаляемых силикатов кальция и различных глиноземистых включений от корунда до герценита. Это приводит к загрязнению стали неметаллическими включениями и ухудшению ее качества.
В основу изобретения поставлена задача усовершенствования материала для рафинирования стали, обеспечивающего условия восстановительной дефосфорации и десульфурации путем оптимизации качественного и количественного составов.
Ожидаемый технический результат - повышение рафинирующей способности материала за счет модифицирования в расплаве металла низковалентных соединений серы и фосфора, что повышает качество стали.
Технический результат достигается тем, что материал для рафинирования стали, содержащий барийсодержащий концентрат и алюминий, по изобретению дополнительно содержит магний, титан и известь, а в качестве барийсодержащего концентрата содержит витеритовый концентрат при следующем соотношении компонентов, мас.%:
Витеритовый концентрат 40-42
Алюминий 38-40
Известь 5-12
Магний 6-8
Титан 1-2
В процессе рафинирования стали предлагаемым материалом создаются условия для модифицирования в расплаве низковалентных соединений серы и фосфора. Этот эффект достигается тем, что состав материала подобран таким образом, что количество алюминия в предлагаемом материале существенно превышает количество высокоактивного элемента - магния, поэтому активность алюминия оказывается выше активности магния и раскисление стали происходит в основном за счет алюминия. А часть не израсходованного на раскисление металла магния направлена на восстановление бария, входящего в состав витеритового концентрата, согласно суммарной реакции:
При этом, когда значительная часть кислорода, находившегося в металле, связана с алюминием, создаются условия для восстановительной дефосфорации металла, сопровождающеся интенсивной десульфурацией по реакциям:
Реакции (2)-(5) обусловлены высоким сродством элементов Ва и Ti к фосфору, которые в условиях раскисленности металла (РO2 1,0· 10-15 атм) образуют хорошо удаляемые из металла фосфиды. При высокой раскисленности происходят также реакции (6) и (7) с образованием сульфидов магния.
При образовании сульфидных и фосфидных соединений магния, бария и титана снижается загрязненность стали неметаллическими включениями в результате ассимиляции покровным шлаком этих сульфидов и фосфидов. Поглощение покровным шлаком сульфидов обусловлено высокой температурой металла в процессе его обработки, обеспечивающей высокую серопоглотительную способность шлака. Фосфиды, например бария, в силу ничтожно малой растворимости его в жидкой стали просто не могут существовать в объеме жидкого металла и также поглощаются совместно с фосфидами титана покровным шлаком.
Выбор граничных пределов содержания компонентов в предлагаемом материале обусловлен следующим.
Содержание витеритового концентрата в количестве 40-42 мас.% обеспечивает после восстановления из него бария проведение процесса глубокой восстановительной дефосфорации с образованием низковалентных легко удаляемых из жидкого металла фосфидов бария. Содержание витеритового концентрата в материале для рафинирования стали в количестве менее 40 мас.% не обеспечивает поступление в расплав достаточного для глубокой дефосфорации бария, а повышение содержания витеритового концентрата более 42 мас.% нецелесообразно из-за нерационального его использования и ухудшения условий магниетермического восстановления бария, приводящего к низкому его извлечению, загрязнению металла непрореагировавшего с магнием витеритового концентрата, что приводит к ухудшению условий восстановительной дефосфорации, снижению показателей рафинирования металла от серы и кислорода и ухудшению качества стали.
Наличие в составе материала для рафинирования стали извести в количестве 5-12 мас.% вызвано необходимостью связывания образующихся в процессе раскисления металла глиноземистых включений и удаления их в покровный шлак. Содержание извести в количестве менее 5 мас.% не обеспечивает полного связывания глиноземистых включений в легко удаляемые глобули, а содержание более 12 мас.% извести ухудшает условия восстановительной дефосфорации и десульфурации из-за снижения активности бария, титана и магния. Кроме того, наличие извести регулирует термичность смеси при прохождении экзотермической реакции восстановления бария.
Алюминий в предлагаемом материале в количестве 38-40 мас.% используют как основной раскислитель и пассиватор более активных элементов - магния и восстановленного бария, снижая их активность по отношению к кислороду и обеспечивая тем самым условия для восстановительной дефосфорации и десульфурации. Снижение содержания алюминия до значений менее 38% не обеспечивает глубокого раскисления металла, приводит к нерациональному расходу магния на раскисление металла, снижения степени восстановления бария, уменьшения глубины восстановительной дефосфорации, снижения показателей десульфурации, что приводит к ухудшению качества металла. Повышение содержания алюминия до значений выше 40 мас.% тоже нецелесообразно ввиду его нерационального расхода, возможности повышения в металле оксидов алюминия, не связанных с СаО, что приводит к ухудшению качества металла.
Магний, входящий в состав материала для рафинирования стали в количестве 6-8 мас.%, используют для восстановления бария из витеритового концентрата и модифицирования образовавшихся в металле сульфидов марганца и железа. Снижение содержания магния в материале для рафинирования стали до значений ниже 6 мас.% не обеспечивает восстановления из витеритового концентрата количества бария, достаточного для проведения глубокой восстановительной дефосфорации, а повышение содержания магния более 8 мас.% приводит к нерациональному расходу магния, повышению содержания в металле оксидов магния, образовавшихся в результате раскисления металла, и ухудшению условий восстановительной дефосфорации, что приводит к ухудшению качества стали.
Титан, входящий в состав материала для рафинирования стали в количестве 1-2%, имеет высокое сродство к фосфору и в условиях раскисленного металла (РО2 1,0· 10-15 атм) образует легко удаляемые фосфиды титана. Его содержание в материале для рафинирования стали в количестве менее 1 мас.% не обеспечивает полноты восстановительной дефосфорации, а содержание более 2 мас.% ограничивает использование материала для рафинирования стали титансодержащими сталями.
Пример.
Предлагаемый материал для рафинирования стали изготавливали следующим образом.
Из алюминия, магния и титана изготовляли сплав путем сплавления соответствующих компонентов в сталеплавильном агрегате с последующим распылением расплава на гранулы фракцией 0,1-1,5 мм. Полученные гранулы сплава смешивали с остальными компонентами материала - витеритовым концентратом и известью. В витеритовом концентрате содержится 82% ВаСО 3, остальное - прочие посторонние примеси.
Обработку жидкого металла (сталь марки 3сп) проводили материалом для рафинирования стали предлагаемого состава и известным брикетом - ближайшим аналогом для раскисления стали и чугуна.
Материал для рафинирования стали вводили в объем жидкого металла, а после обработки отбирали пробы и анализировали на содержание серы и фосфора. По содержанию серы и фосфора до и после обработки металла предлагаемым материалом определяли степень дефосфорации и десульфурации.
Обработку стали известным брикетом для расксисления стали и чугуна осуществляли путем подачи брикетов на зеркало металла, после чего также отбирали пробы металла, анализировали их на содержание серы и фосфора и определяли степень дефосфорации и десульфурации.
Составы используемых материалов и показатели степени дефосфорации и десульфурации представлены в таблице (№1-5 - предлагаемый материал, №6 - известный брикет - ближайщий аналог).
Из приведенных результатов видно, что при использовании предлагаемого материала для рафинирования стали одновременно осуществлялись два процесса - дефосфорации и десульфурации, причем численные показатели этих процессов свидетельствуют о высокой степени каждого из них. Это объясняется созданием условий, благоприятных для восстановительной дефосфорации, которая сопровождается и десульфурацией, т.е. осуществляется процесс модифицирования низковалентных соединений серы и фосфора.
При использовании известного брикета для раскисления стали и чугуна степень дефосфорации заметно ниже, а десульфурация отсутствует. Это связано с тем, что наличие в металле восстановленных из продукта обжига витеритстронцианитового концентрата бария и стронция в виде прочных силицидов BaSi 2 и SrSi2 не обеспечивает условий для восстановительной дефосфорации, а часть удаленного из металла фосфора находится в виде фосфатов бария. Образовавшиеся в результате алюмино- и силикотермической реакции силициды бария и стронция, являясь прочными соединениями, снижают активность бария и стронция по отношению к фосфору, поэтому дефосфорация происходит в окислительных условиях, степень ее невысока, а десульфурация в окислительных условиях отсутствует.
Таблица | |||||||
№п/п | Содержание компонентов, мас.%: | Степень дефосфорации, % | Степень десульфурации, % | ||||
Витеритовый концентрат | Известь | Алюминий | Магний | Титан | |||
1 | 42,0 | 5,0 | 38,0 | 6,0 | 1,0 | 85,0 | 65,0 |
2 | 40,0 | 8,0 | 39,0 | 7,0 | 1,5 | 83,0 | 63,0 |
3 | 41,0 | 12,0 | 40,0 | 8,0 | 2,0 | 87,0 | 60,0 |
4 | 42,0 | 8,0 | 39,0 | 7,0 | 1,4 | 84,0 | 61,0 |
5 | 40,0 | 12,0 | 40,0 | 8,0 | 2,0 | 85,0 | 64,0 |
6*) | - | - | 10,0 | - | - | 12,0 | - |
*) Брикет для раскисления и модифицирования стали и чугуна дополнительно содержит, мас.%: продукт обжига витеритстронцианитового концентрата - 54; порошок 65%-ного ферросилиция - 30; плавиковый шпат - 3; связующее - 3. |
Класс C22C35/00 Сплавы (лигатуры) для легирования железа или стали
Класс C21C7/064 удаление фосфора; удаление серы