способ получения оксида скандия из красного шлама

Классы МПК:C22B59/00 Получение редкоземельных металлов
C22B3/04 выщелачиванием
C22B3/20 обработка или очистка растворов, например, полученных выщелачиванием
C01F17/00 Соединения редкоземельных металлов, те скандия, иттрия, лантана или группы лантаноидов
Автор(ы):, , , , ,
Патентообладатель(и):Институт химии твердого тела Уральского Отделения Российской Академии наук (RU)
Приоритеты:
подача заявки:
2003-06-24
публикация патента:

Изобретение относится к цветной металлургии, а именно к извлечению оксида скандия из отходов производства при переработке бокситов на глинозем. Способ получения оксида скандия из красного шлама, отхода производства глинозема, включает многократное последовательное выщелачивание красного шлама смесью растворов карбоната и гидрокарбоната натрия, промывку и отделение осадка, введение в полученный раствор оксида цинка, растворенного в гидроксиде натрия, выдержку раствора при повышенной температуре и перемешивании, отделение осадка и его обработку раствором гидроксида натрия при температуре кипения, отделение, промывку и сушку полученного продукта с последующим извлечением оксида скандия известными методами. При выщелачивании через смесь растворов карбоната натрия и гидрокарбоната натрия пропускают газовоздушную смесь, содержащую 10-17% СО2 (по объему), выщелачивание повторяют до получения раствора с концентрацией по оксиду скандия не менее 50 г/м3, вводят в раствор твердый гидроксид натрия до концентрации 2-3.5 кг/м3 по Na2Oкаустическому и выдерживают при температуре не выше 80°С с последующим введением флокулянта, выдержкой и отделением осадка, являющегося титановым концентратом, полученный раствор подвергают электролизу с твердыми электродами при катодной плотности 2-4 А/дм2 и температуре 50-75°С в течение 1-2 часов для очистки от примесей, раствор оксида цинка в гидроксиде натрия добавляют в очищенный после электролиза раствор до соотношения ZnO:Sc2O3 =(10-25):1 и вводят флокулянт, выдержку раствора ведут при 100-102°С в течение 4-8 часов, обработку отделенного осадка ведут 5-12% раствором гидроксида натрия при температуре кипения, снова вводят флокулянт, выдерживают и отделяют осадок. При этом в качестве флокулянта используют флокулянт марки “Налко” в количестве 2-3 г/м3. Предлагаемый способ получения оксида скандия из красного шлама, отхода производства глинозема, позволяет получить технический результат, а именно увеличить процент извлечения целевого продукта в концентрат, снизить содержание примесей в концентрате, а также значительно снизить расход гидрокарбоната натрия, сократить длительность процесса за счет сокращения времени отстаивания мелкодисперсного осадка. 1 з.п. ф-лы.

Формула изобретения

1. Способ получения оксида скандия из красного шлама - отхода производства глинозема, включающий многократное последовательное выщелачивание красного шлама смесью растворов карбоната и гидрокарбоната натрия, промывку и отделение осадка, введение в полученный раствор оксида цинка, растворенного в гидроксиде натрия, выдержку раствора при повышенной температуре и перемешивании, отделение осадка и его обработку раствором гидроксида натрия при температуре кипения, отделение, промывку и сушку полученного продукта с последующим извлечением оксида скандия известными методами, отличающийся тем, что при выщелачивании через смесь растворов карбоната натрия и гидрокарбоната натрия пропускают газовоздушную смесь, содержащую 10-17% СО2 (по объему), выщелачивание повторяют до получения раствора с концентрацией по оксиду скандия не менее 50 г/м3, вводят в раствор твердый гидроксид натрия до концентрации 2-3,5 кг/м3 по Na2O каустическому и выдерживают при температуре не выше 80°С с последующим введением флокулянта, выдержкой и отделением осадка, являющегося титановым концентратом, полученный раствор подвергают электролизу с твердыми электродами при катодной плотности 2-4 А/дм2 и температуре 50-75°С в течение 1-2 ч для очистки от примесей, раствор оксида цинка в гидроксиде натрия добавляют в очищенный после электролиза раствор до соотношения ZnO:Sc2O3=(10÷25):1 и вводят флокулянт, выдержку раствора ведут при 100-102°С в течение 4-8 ч, обработку отделенного осадка ведут 5-12%-ным раствором гидроксида натрия при температуре кипения, снова вводят флокулянт, выдерживают и отделяют осадок.

2. Способ по п.1, отличающийся тем, что в качестве флокулянта используют флокулянт марки “Налко” в количестве 2-3 г/м3.

Описание изобретения к патенту

Изобретение относится к цветной металлургии, а именно к извлечению оксида скандия из отходов производства при переработке бокситов на глинозем.

Известен способ извлечения оксида скандия из отходов производства глинозема - красного шлама, включающий выщелачивание серной кислотой, сорбцию на обработанном серной кислотой анионите на основе полиэтиленполиаминов, сорбцию скандия фосфорсодержащим ионитом, последующую промывку ионита, десорбцию скандия и переработку полученного элюата с извлечением оксида скандия (патент №2196184, С 22 В 59/00, 2003 год).

Но известный способ обладает рядом недостатков: сложная технология использования ионитов при проведении экстракции и сорбции, неблагополучная экологическая обстановка за счет использования органики.

Наиболее близким по технической сущности к заявленному является способ извлечения скандия при переработке бокситов на глинозем, например, из красного шлама, побочного продукта переработки, включающий выщелачивание водой и/или 5-12% раствором карбоната или гидрокарбоната натрия или их смесью, которое проводят не менее 3-х раз при температуре не выше 50°С в течение не менее 2-х часов при соотношении Т:Ж=1:2,5-5,0 с использованием каждый раз новых порций продукта переработки бокситов в качестве исходного сырья, отделение раствора от осадка, введение в полученный раствор оксида алюминия или цинка, растворенного в гидроксиде натрия, выдержку при температуре не ниже 80°С в течение не менее 2-х часов. Полученный осадок отделяют, промывают и обрабатывают 10-25%-ным раствором гидроксида натрия при нагревании до кипения, фильтруют и промывают 1-5%-ным раствором гидроксида натрия, затем растворяют осадок в 1-5%-ной соляной кислоте, фильтруют и фильтрат обрабатывают 10-25%-ным раствором аммиака или 2-10%-ной плавиковой кислотой с избытком 1-3% от стехиометрии с получением первичного скандиевого концентрата (патент РФ №2201988, МПК С 22 В 59/00, 2003).

Недостатками известного способа являются:

- значительный расход гидрокарбоната натрия и пониженное извлечение скандия при выщелачивании, ограниченное количество циклов выщелачивания красного шлама одной порцией раствора, поскольку увеличивается содержание карбоната натрия сверх его растворимости в растворе гидрокарбоната натрия;

- получение бедного скандиевого концентрата, обогащенного рядом вредных примесей;

- значительное время отстаивания выпадающего мелкодисперсного осадка оксида скандия.

Таким образом, перед авторами стояла задача разработать способ получения оксида скандия из красного шлама, отхода производства глинозема, который бы обладал высокой технологичностью наряду с высоким извлечением скандия в конечный продукт.

Предлагаемый способ обеспечивает получение технического результата, заключающегося в высокой технологичности процесса наряду с высоким извлечением скандия.

Технический результат достигается в предлагаемом способе получения оксида скандия из красного шлама, отхода производства глинозема, включающем многократное последовательное выщелачивание красного шлама смесью растворов карбоната и гидрокарбоната натрия, промывку и отделение осадка, введение в полученный раствор оксида цинка, растворенного в гидроксиде натрия, выдержку раствора при повышенной температуре и перемешивании, отделение осадка и его обработку раствором гидроксида натрия при температуре кипения, отделение, промывку и сушку полученного продукта с последующим извлечением оксида скандия известными методами, в котором при выщелачивании через смесь растворов карбоната натрия и гидрокарбоната натрия пропускают газовоздушную смесь, содержащую 10-17% СО 2 (по объему), выщелачивание повторяют до получения раствора с концентрацией по оксиду скандия не менее 50 г/м3 , вводят в раствор твердый гидроксид натрия до концентрации 2-3.5 кг/м3 по Nа2Окаустическому и выдерживают при температуре не выше 80°С с последующим введением флокулянта, выдержкой и отделением осадка, являющегося титановым концентратом, полученный раствор подвергают электролизу с твердыми электродами при катодной плотности 2-4 А/дм2 и температуре 50-75°С в течение 1-2 часов для очистки от примесей, раствор оксида цинка в гидроксиде натрия добавляют в очищенный после электролиза раствор до соотношения ZnO:Sс2O3 =(10-25):1 и вводят флокулянт, выдержку раствора ведут при 100-102°С в течение 4-8 часов, обработку отделенного осадка ведут 5-12% раствором гидроксида натрия при температуре кипения, снова вводят флокулянт, выдерживают и отделяют осадок.

При этом в качестве флокулянта может быть использован флокулянт марки “Налко” в количестве 2-3 г/м3.

В настоящее время из патентной и научно-технической литературы не известен способ получения оксида скандия из отходов производства глинозема, включающий предлагаемую последовательность технологических операций с параметрами режимов в предлагаемых интервалах значений.

Предлагаемые технологические режимы и параметры объясняются следующими причинами.

Получение гидрокарбоната из карбоната натрия непосредственно в аппарате путем пропускания через пульпу красного шлама СО2-содержащей газовоздушной смеси, получаемой, например, из очищенных и охлажденных печных газов (от печей спекания, обжига известняка и др.), позволяет использовать более дешевый и в меньшем количестве продукт, а также вторичный карбонат натрия, который образуется в результате нейтрализации содержащегося в красном шламе Na2О ку гидрокарбонатом натрия, и снижает расход содопродуктов.

Применение СO2-содержащих газов позволяет корректировать содержание накапливающегося в растворе карбоната натрия, предотвращая его выпадение в осадок при многократном использовании порции обогащаемого раствора, что позволяет повысить содержание скандия в растворе. В используемом температурном интервале наблюдается повышенная стойкость гидрокарбонатного комплекса скандия и, соответственно, его максимальное извлечение.

Предлагаемый способ использует эффект повышения активности гидрокарбоната натрия в момент его образования, за счет которого более чем на 3% увеличивается извлечение оксида скандия в растворимый гидрокарбонатный комплекс.

Введение в обогащенный скандием раствор твердого гидроксида натрия в определенном количестве и при определенных условиях позволяет частично отделить растворимые соединения титана, железа, циркония и пр., комплексы которых разрушаются при создании слабощелочной среды. Указанные оксидные соединения выпадают в осадок, тогда как более прочно связанный с гидрокарбонат-ионом скандий остается в растворе, что позволяет получить повышенную чистоту конечного продукта. Проведение электролиза в предлагаемых условиях направлено также на повышение чистоты конечного продукта, обеспечивая снижение в несколько раз содержания железа, свинца, меди, а также других примесей.

Введение раствора оксида цинка в гидроксиде натрия в предлагаемом соотношении с последующим введением флокулянта и проведение высокотемпературного гидролиза в предлагаемых условиях способствует выделению мелкодисперсного осадка, дальнейшая обработка которого обеспечивает высокий процент извлечения оксида скандия.

Предлагаемый способ осуществляют следующим образом.

В карбонизатор помещают отфильтрованный красный шлам, воду, карбонат (30-100 г/дм3) и гидрокарбонат натрия (50-100 г/дм3), отношение Т:Ж=1:(2-5). Пульпу обрабатывают при температуре 50-60°С газовоздушной смесью, содержащей 10-17% (объемных) СО2. В процессе карбонизации в содогидрокарбонатный раствор переходят часть оксида скандия, оксид натрия, содержащийся в жидкой и в твердой фазе шлама (20%), некоторое количество соединений титана, железа, циркония и др., а также тонкодисперсная взвесь, состоящая из оксидов кремния, железа и пр. Использование СО 2 из газовоздушной смеси в среднем близко к 30%. После окончания операции раствор отстаивают, отделяют от осадка. Последний промывают водой, которую используют для компенсации потерь воды при карбонизации. Благодаря возврату промводы потери скандия и содопродуктов с влагой осадка незначительны. Необходимую концентрацию гидрокарбоната натрия поддерживают за счет взаимодействия исходного и вторичного карбоната натрия с углекислым газом. Температурный интервал обусловлен тем фактом, что при температуре ниже 50°С уменьшается скорость выщелачивания шлама, а при температуре свыше 60°С увеличиваются потери растворителя - гидрокарбоната натрия. Применение карбоната вместо гидрокарбоната натрия позволяет расходовать в 1.68 раза меньше содопродуктов, кроме того, используется вторичный карбонат натрия, количество которого за 1 операцию карбонизации составляет 15-19% (масс.) от первичного карбоната натрия. Применение углекислого газа увеличивает на 3% извлечение скандия в раствор, так как образующийся гидрокарбонат натрия в момент образования обладает большей реакционной способностью.

Одну порцию содогидрокарбонатного обогащаемого раствора используют до 10 раз, накапливая в нем не менее 50 г/м3 оксида скандия. Количество операций ограничивается концентрациями гидрокарбоната и карбоната натрия в растворе, так как при превышении предела растворимости начинается выпадение твердых фаз.

Богатый скандием содогидрокарбонатный раствор после карбонизации и осветления подщелачивают гидроксидом натрия до концентрации 2-3.5 г/дм3 по Nа2Окауст. и подвергают гидролизу при температуре 80°С в течение не менее 2-х часов. Выпавший осадок оксидов титана, железа, циркония, кремния является богатым титановым концентратом [(56% ТiO 2 и 3.5% ZrO2 (масс.)]. Полученный содощелочной раствор подвергают электролизу при катодной плотности тока 2-4 А/дм2, температуре 50-75°С в течение 1-2 часов. В процессе электролиза в несколько раз снижается концентрация электроположительных примесей - железа, меди, свинца. Одновременно снижается концентрация находящихся в коллоидной форме оксидов титана и кремния, что можно объяснить электрофоретическим переносом к катоду мицелл и их разрядке, за счет чего оксиды титана и кремния также частично выпадают в осадок.

В очищенный содощелочной раствор вводят цинкатный раствор, исходя из дозировки ZnO:Sc 2O3=(10-25):1, вводят флокулянт и перемешивают смесь при 100-102°С в течение 4-8 часов. В условиях высокотемпературного гидролиза из раствора выпадает осадок, в котором оксид цинка является коллектором для оксида скандия. При меньшем заявленного избытка цинка снижается извлечение оксида скандия, больший избыток не влияет на процесс, но получается более бедный концентрат, что создает дополнительные трудности в последующей операции - удалении из осадка оксида цинка. Влажный осадок подают на выщелачивание 5-12% раствором гидроксида натрия при 100°С и перемешивании.

При концентрации менее 5% гидроксида натрия ухудшаются скорость и полнота выщелачивания оксида цинка, при концентрации более 12% увеличиваются потери оксида скандия.

В известном способе при выщелачивании осадков, полученных из производственных растворов, извлечение в раствор гидроксида натрия оксида цинка обычно прекращается после удаления 92-94%; в предлагаемом способе за счет удаления примесей при проведении электролитической очистки повышается процент выщелачиваемости оксида цинка, в результате чего удаляется 95-98% оксида цинка.

Маточный содощелочной раствор после извлечения скандия передают в глиноземное производство или частично используют в голове процесса. Цинкатный раствор после выщелачивания осадка оксидов используют многократно.

Осадок оксида скандия отфильтровывают из цинкатного раствора, промывают и высушивают при 250°С. Он является богатым концентратом, содержащим до 32% оксида скандия. Для отделения тонкодисперсного осадка оксида скандия вводят флокулянт и дают достаточную выдержку - до 6 часов для выпадения осадка. В качестве флокулянта может быть использован флокулянт “Налко” №7864 в виде раствора из расчета 2-3 г/м3.

Полное извлечение оксида скандия из красного шлама в концентрат в среднем составляет 12.8% (масс.).

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. В стальной стакан емкостью 3,5 дм3 (способ получения оксида скандия из красного шлама, патент № 2247788150 мм, высота 200 мм) - карбонизатор, оборудованный мешалкой, крышкой, барботером и водяной рубашкой, помещают 150 г Nа2СO 3 и 30 г NаНСO3, 1.6 дм3 воды и 1 кг отвального красного шлама с влажностью 25%. Состав шлама: твердая фаза, масс.%: Fе2O3 39-40, FеO 6-7, Аl2O3 12-14, SiO2 8-9, СаO 12-13, ТiO2 3.5-4.0, Nа2O 3-3.5, ZrO 2 0.16, Сu 0.08, Рb 0.05, Sc2O3 0.0125, nnn 14.0; жидкая фаза, г/дм3: Nа2 Oку 8.0, Na2Oкб 0.4, Аl 2O3 1.6.

Через пульпу, состоящую из 1.85 дм3 жидкой и 0.75 кг твердой фазы (отношение Ж:Т=1:2,5), за 6 часов карбонизации при температуре 60°С пропускают 290 ндм3 газовой смеси, содержащей 17% СO2 . При карбонизации поддерживают постоянный объем пульпы, компенсируя потерю воды добавлением промвод, полученных при отмывке выщелоченного шлама. За счет промывки потери содопродуктов снижаются на 3.3 г Nа2O за одну операцию.

Часть NаНСO3 - 19.8 г - расходуется на нейтрализацию Nа2O ку, содержащегося в жидкой и твердой фазах красного шлама: соответственно 2.1 и 5.2 г, всего 7.3 г Nа2Oку . При этом в растворе образуется 25.0 г Nа2СO 3. Поглощение СO2 раствором при карбонизации составляет в среднем 30%.

Масса полученного осадка в первой и последующих операциях составляет ~1.0 кг при влажности 25%.

Объем фильтрата после отделения и промывки осадка равен 1.60 дм3 и имеет состав, кг/м3: Nа 2СO3 71.9, NаНСO3 60.1, Fе2 O3 0.14, Аl2O3 0.1, ТiO 2 0.7, ZrO2 0.02, Sc2O3 8.13·10-3 (суммарно во всем объеме раствора 13,0 мг). Полученный раствор используют для карбонизации второй порции красного шлама в приведенных выше условиях. Для карбонизации второй порции шлама в течение 2-х часов в пульпу подают 65 ндм 3 газовоздушной смеси, содержащей 17% (объемных) СO 2 для компенсации потерь NаНСO3 при нейтрализации Nа2Oку шлама и промывке осадка. В результате второй операции получают 1.6 дм3 фильтрата состава, кг/м3: Nа2СO3 72.9; NаНСO 3 65.1; Fе2O3 0.22; Аl2 O3 0.12; ТiO2 1.38; ZrO2 0.058 и Sc2O3 15.3 г/м3 (24.5 мг).

В последующих операциях карбонизацию проводят таким образом, чтобы в 3-5 операциях содержание гидрокарбоната было в пределах 65-68 кг/м3, а в 6-10 - в пределах 70-75 кг/м 3. Корректировку состава добавлением Nа2СO 3 в этом случае не проводят. После выполнения 5-ти операций карбонизации получают 1.63 дм3 фильтрата состава, кг/м3: Nа2СO3 81.9, NаНСО 3 68.3, Fe2O3 0.27, Аl2 O3 0.14, ТiO2 1.40, ZrO2 0.059 и Sc2O3 38.6 г/м3 (62.9 мг). Извлечение из шлама в раствор во всех операциях для Nа2 O и Sc2O3 остается примерно постоянным, содержание в растворе оксидов железа, титана, алюминия, кремния и др. изменяется незначительно.

Операции карбонизации шлама одной порцией раствора продолжают до 10-ти операций, после чего получают 1.68 дм3 фильтрата состава, кг/м3 : Nа2СO3 98.5, NаНСO3 74.9, Fе2O3 0.62, Аl2O3 0.17, ТiO2 1.69, ZrO2 0.06, SiO2 0.23, Сu 0.046, Рb 0.056 и Sс2O3 79 г/м 3 (132.0 мг).

В полученном после фильтрации растворе наблюдается значительное количество взвеси, состоящей из мелкодисперсных и коллоидных частиц соединений железа, титана, кремния и др. Для перевода в осадок растворимых в гидрокарбонате соединений ряда гидроксидов (Fе, Тi, Zr и др.), а также части взвеси в фильтрат при перемешивании вводят 65.3 г твердого гидроксида натрия для получения слабощелочного раствора, что соответствует 2.5 кг/м3 по Nа2Oкаустическому . После 2-х часов выдержки при 75-80°С в раствор вводят 1% раствор флокулянта “Налко” №7864 из расчета 2 г/м3 , затем после 6 часов отстаивания выпавший осадок отфильтровывают и промывают.

Высушенный и прокаленный осадок массой 5.2 г содержит, масс.%: ТiO2 56.0; ZrO2 3.5; Fе2O3 25.9; SiO2 6.0; прочих (SiO2, Fе2O3, Nа2 O и др.) 8.2; Sc2O3 5.1 мг или 0.16% от массы осадка.

Полученный содощелочной раствор объемом 1.7 дм3 состава, кг/м3: Nа2СO 3 176.9, Nа2Oку 2.5, Аl2 O3 0.1, Fе2O3 0.04, ТiO 2 0.04, ZrO2 0.01, SiO2 0.05, Сu 0.036, Рb 0.05 и Sс2O3 74.20 г/м3 (126,0 мг), подвергают электролизу при плотности тока: катодной 2.0 А/дм2, объемной 5 А/дм3, температуре 75°С с электродами из кислостойкой стали. За 2 часа электролиза концентрация ряда вредных примесей снижается и составляет, кг/м 3: Fе2O3 0.003, ТiO2 0.01, SiO2 0.03, Рb 0.005, Сu 0.004. Визуально раствор после отстаивания более прозрачный. Далее в раствор вводят 0.05 дм3 цинкатного раствора (1.05 г Zn) с концентрацией Nа2Oку 180 кг/м3 и Zn 21 кг/м 3 (отношение ZnO:Sс2O3=10:1), добавляют 3.2 мг флокулянта “Налко” и выдерживают при температуре около 100°С и перемешивании в течение 4 часов. После 6 часов отстаивания отфильтруют выпавший мелкокристаллический осадок. После промывки и сушки при 250°С масса осадка составляет 1.61 г, содержание компонентов, % масс.: Sс2O 3 - 7.60 (0,122 г); ZnO - 81.80; Аl2O3 - 4.16; Fе2O3 - 0.31; ТiO2 - 1.05; ZrO2 - 0.37; SiO2 - 3.10; Сu - 0.006; Рb - 0.1; пр. - 1.53.

Отфильтрованный содощелочной раствор используют для выщелачивания следующей партии красного шлама.

Влажный осадок оксидов в течение 2-х часов обрабатывают при 100°С и перемешивании 12% раствором гидроксида натрия. В конце операции вводят 3.2 мг флокулянта “Налко” и после 6-ти часов отстаивания отфильтровывают осадок скандиевого концентрата. После промывки и высушивания при 250°С масса осадка составляет 0.41 г, состав, % (масс.): Sс2O3 - 29.70; ZnO - 11.82; Аl2O3 - 20.30; ТiO2 - 5.15; Fе2O3 - 1.52; Сu - 0.30; Рb - 0.60; пр. - 6.98.

Далее скандиевый концентрат перерабатывают по известной технологии.

В результате среднее извлечение оксида скандия из шлама в содогидрокарбонатный раствор за 10 операций составляет (с учетом потерь с влагой отвального кека) 13.90%. Потери оксида скандия при проведении операций составляют, % (масс.): отделение осадка гидроксидов титана, циркония и др. - 3.8; от содержащегося в растворе; механические - 0.5%; осаждение смеси оксидов скандия и цинка - 3% и при выщелачивании оксида цинка из осадка - 2%. Полное извлечение оксида скандия в первичный концентрат, содержащий 29.70% Sс2O3, составляет 12.8%.

В известном способе в прокаленном осадке содержится всего 5-20% Sс2O3, то есть меньше в 1.5-5.9 раза, а извлечение Sс2O3 из шлама на 3.0% ниже. Продолжительность осветления растворов перед фильтрацией в известном способе также в 2-3 раза превышает продолжительность этой операции в предлагаемом способе.

Пример 2. Проводят 10 операций карбонизации, как описано в примере 1, но с использованием газовоздушной смеси с содержанием 10% (объемн.) СO2 при температуре 50°. Остальные условия соответствуют примеру 1. В первой операции объем газовой смеси составляет 437 ндм 3, продолжительность - 8.5 часов. Во второй операции объем газовой смеси равен 100 ндм3 при продолжительности 3 часа, в последующих операциях подачу газовой смеси проводят из расчета содержания гидрокарбоната в растворе 65-75 г/дм 3. Содержание Sс2O3 после проведения 10 операций составляет 77.4 г/м3 (127.4 мг), что составляет 96.5% от результата в примере 1. Для перевода в осадок растворимых в гидрокарбонате соединений ряда гидроксидов (Fе, Тi, Zr и др.), а также части взвеси в фильтрат при перемешивании вводят твердый гидроксид натрия в расчете 2.5 кг/м3 по Nа2 Oкаустическому для получения слабощелочного раствора. После 2-х часов выдержки в раствор при 75-80°С вводят 1% раствор флокулянта “Налко” №7864 из расчета 3 г/м3 , затем после 6 часов отстаивания выпавший осадок отфильтровывают, промывают и прокаливают. Содержание Sc2O3 в осадке после прокаливания составляет 0.08% (4,5 мг) или 3.2% от исходного в растворе. Полученный содощелочной раствор подвергают электролизу при катодной плотности тока 4.0 А/дм2, температуре 50°С с электродами из кислостойкой стали. Визуально раствор после отстаивания более прозрачный. Далее в раствор вводят 2.5 г цинка, исходя из соотношения ZnO:Sс2O3 =25:1, процесс проводят при 102°С в течение 8 часов. Влажный осадок оксидов в течение 2-х часов обрабатывают при 100°С и перемешивании 5% раствором гидроксида натрия. В конце операции вводят флокулянт “Налко” №7864 из расчета 3 г/м3 и после 6-ти часов отстаивания отфильтровывают осадок скандиевого концентрата, промывают его и высушивают при 250°С.

Извлечение Sс2O3 из шлама в содогидрокарбонатный раствор составляет 13.6%. Потери Sс2O3 при получении концентрата из содогидрокарбонатного раствора в операциях, %: при отделении осадка гидроксидов примесей - 3.2; осаждение ZnO и Sc2O3 - 3.1; выщелачивании ZnO - 2.5; механические - 0.5; суммарные - 9.6.

Полное извлечение (масс.) из шлама в концентрат составляет 11.4% при содержании 30.6 масс.% Sc2O3.

Таким образом, предлагаемый способ получения оксида скандия из красного шлама, отхода производства глинозема, позволяет увеличить процент извлечения целевого продукта в концентрат, снизить содержание примесей в концентрате, а также значительно снизить расход гидрокарбоната натрия, сократить длительность процесса за счет сокращения времени отстаивания мелкодисперсного осадка.

Класс C22B59/00 Получение редкоземельных металлов

способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты при переработке хибинских апатитовых концентратов -  патент 2528692 (20.09.2014)
способ извлечения редкоземельных металлов и получения строительного гипса из фосфогипса полугидрата -  патент 2528576 (20.09.2014)
способ извлечения редкоземельных металлов и получения строительного гипса из фосфогипса полугидрата -  патент 2528573 (20.09.2014)
способ извлечения редкоземельных металлов из фосфогипса -  патент 2526907 (27.08.2014)
способ переработки лопаритового концентрата -  патент 2525951 (20.08.2014)
способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты -  патент 2525947 (20.08.2014)
способ переработки фосфогипса -  патент 2525877 (20.08.2014)
способ вскрытия перовскитовых концентратов -  патент 2525025 (10.08.2014)
способ извлечения редкоземельных элементов из гидратно-фосфатных осадков переработки апатита -  патент 2524966 (10.08.2014)
способ очистки фосфатно-фторидного концентрата рзэ -  патент 2523319 (20.07.2014)

Класс C22B3/04 выщелачиванием

способ извлечения молибдена из техногенных минеральных образований -  патент 2529142 (27.09.2014)
способ переработки сульфидного сырья, содержащего драгоценные металлы -  патент 2528300 (10.09.2014)
способ извлечения рения и платиновых металлов из отработанных катализаторов на носителях из оксида алюминия -  патент 2525022 (10.08.2014)
способ переработки золотосодержащих концентратов двойной упорности -  патент 2514900 (10.05.2014)
способ извлечения дисперсного золота из упорных руд и техногенного минерального сырья -  патент 2509166 (10.03.2014)
способ извлечения молибдена и церия из отработанных железооксидных катализаторов дегидрирования олефиновых и алкилароматических углеводородов -  патент 2504594 (20.01.2014)
комбинированный способ кучного выщелачивания золота из упорных сульфидных руд -  патент 2502814 (27.12.2013)
способ переработки отходов электронной и электротехнической промышленности -  патент 2502813 (27.12.2013)
способ подготовки рудных тел на месте залегания к выщелачиванию полезных компонентов -  патент 2495238 (10.10.2013)
способ определения содержания золота и серебра в сульфидных рудах и продуктах их переработки -  патент 2494160 (27.09.2013)

Класс C22B3/20 обработка или очистка растворов, например, полученных выщелачиванием

способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты -  патент 2509169 (10.03.2014)
способ извлечения америция из отходов -  патент 2508413 (27.02.2014)
способ извлечения молибдена и церия из отработанных железооксидных катализаторов дегидрирования олефиновых и алкилароматических углеводородов -  патент 2504594 (20.01.2014)
способ извлечения золота из хвостов цианирования углистых сорбционно-активных руд и продуктов обогащения -  патент 2493277 (20.09.2013)
способ получения никеля из рудного сульфидного сырья -  патент 2492253 (10.09.2013)
способ количественного определения церия в стали и сплавах -  патент 2491361 (27.08.2013)
способ получения оксида скандия из красного шлама -  патент 2483131 (27.05.2013)
способ извлечения америция -  патент 2477758 (20.03.2013)
универсальный способ селективного извлечения солей переходных, редкоземельных и актиноидных элементов из многокомпонентных растворов с помощью нанопористых материалов -  патент 2472863 (20.01.2013)
способ извлечения золота из минерального сырья, содержащего мелкие фракции золота -  патент 2467083 (20.11.2012)

Класс C01F17/00 Соединения редкоземельных металлов, те скандия, иттрия, лантана или группы лантаноидов

способ кристаллизации фосфатов рзм из растворов экстракционной фосфорной кислоты -  патент 2529228 (27.09.2014)
способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты при переработке хибинских апатитовых концентратов -  патент 2528692 (20.09.2014)
новый желтый неорганический пигмент из самария и соединений молибдена и способ его получения -  патент 2528668 (20.09.2014)
способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена -  патент 2526981 (27.08.2014)
способ извлечения редкоземельных металлов из фосфогипса -  патент 2526907 (27.08.2014)
способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты -  патент 2525947 (20.08.2014)
способ извлечения редкоземельных элементов из гидратно-фосфатных осадков переработки апатита -  патент 2524966 (10.08.2014)
способ очистки фосфатно-фторидного концентрата рзэ -  патент 2523319 (20.07.2014)
композиция на основе оксидов циркония, церия и другого редкоземельного элемента при сниженной максимальной температуре восстанавливаемости, способ получения и применение в области катализа -  патент 2518969 (10.06.2014)
способ выделения гадолиния экстракцией фосфорорганическими соединениями -  патент 2518619 (10.06.2014)
Наверх