способ криосохранения меристем, изолированных из растений малины красной (rubus idaeus l.), in vitro

Классы МПК:A01H4/00 Разведение растений из тканевых культур
Автор(ы):,
Патентообладатель(и):Институт физиологии растений им. К.А. Тимирязева Российской Академии Наук (RU)
Приоритеты:
подача заявки:
2003-12-04
публикация патента:

Изобретение относится к биотехнологии, в частности к криосохранению меристем малины красной (Rubus idaeus L.). Подготавливают растения-доноры меристем к замораживанию, где растения-доноры закаливают на твердой питательной среде, дополненной веществами цитокининового действия. Затем выделяют апексы и обрабатывают криопротекторами. Охлаждают апексы в криоампулах, с последующим криосохранением. Проводят посткриогенную регенерацию растений из кроисохраненных меристем. Предлагаемый способ криосохранения меристематических апексов, изолированных из закаленных in vitro растений, позволяет восстанавливать растения из криосохраненных меристем малины красной (Rubus idaeus L.), минуя стадию каллусообразования. 1 ил., 2 табл.

способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121

способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121

Формула изобретения

Способ криосохранения меристем, изолированных из растений малины красной (Rubus idaeus L.), закаленных in vitro, заключающийся в подготовке растений-доноров меристем к замораживанию, выделении апексов, их обработке криопротекторами, охлаждении апексов в криоампулах до сверхнизких температур, криосохранении ампул с меристемами и посткриогенной регенерации растений из криосохраненных меристем, отличающийся тем, что растения-доноры меристем закаливают на твердой питательной среде, дополненной веществами цитокининового действия.

Описание изобретения к патенту

Изобретение относится к биотехнологии, в частности к сохранению генетических ресурсов вегетативно размножаемых растений, и может использоваться в садоводстве для длительного криогенного хранения оздоровленных клонов ценных сортов малины красной (Rubus idaeus L.).

Криобанк изолированных меристем позволяет длительное время и экономично сохранять оздоровленные клоны ценных отечественных и районированных в России иностранных сортов малины красной.

Известен способ криосохранения меристем малины красной, принадлежащий Б.Рид и Х-Лагерстедт (Reed В.М., Lagerstedt H.B. Freeze preservation of apical meristems of rubus in liquid nitrogen //Hort. Science. 1987. V.22. №2. Р. 302-303).

В этом способе авторы размножали растения малины пяти видов. Для этого была использована питательная среда Андерсона (Anderson W.C. Tissue culture propagation of red and black raspberries Rubus idaeus and R. occidentalis. //Acta Hort. 1980. V.112. P.13-20), дополненная: 43 способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 М аденин сульфата, 10 способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 М бензиламинопурина, 2 способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 М индолилмасляной кислоты, 3% сахарозы и 0,6% агара (рН 5,7). Культивировали растения in vitro при 25° С на 16-часовом дне. Изолированные из этих растений меристемы (0,6-1,0 мм) 48 часов "предкультивировали" на среде Андерсона с добавлением 5% ДМСО (диметилсульфоксида). Затем меристемы помещали в криоампулы и добавляли туда по каплям охлажденную до +1° С смесь криопротекторов в течение 30 минут. В смеси криопротекторов при 23° С меристемы выдерживали 1 час. Меристемы в криоампулах с 0,5 мл смеси криопротекторов замораживали до -40° С со скоростью 0,8° С/мин в программируемом замораживателе, а затем погружали в жидкий азот на один час. Затем ампулы с меристемами быстро оттаивали в водяной бане при 40° С в течение 90 сек и перемещали в водяную баню комнатной температуры. После оттаивания образцы подсушивали на стерильной фильтровальной бумаге и переносили в чашки Петри со средой Андерсона, дополненной 1 способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 М бензиламинопурина. В данной работе были использованы несколько смесей криопротекторов. Самой эффективной для сохранения меристем живыми показала себя смесь PGD: 10% полиэтиленгликоля, 10% глюкозы и 10% ДМСО, однако именно при использовании этой смеси наблюдали максимальное количество каллусообразования среди выживших меристем (8-19%).

Через год появилась статья, где был изложен усовершенствованный метод криосохранения меристем малины красной (Reed B.M. Cold acclimation as a method to improve survival of cryopreserved Rubus meristems // Cryo-Letters. 1988. V.9. P. 166-177). На этот раз для размножения растений малины in vitro автор использовала питательную среду МС - Мурасиге и Скуга (Murashige Т., F.Skoog A revised medium for rapid growth and bio-assays with tobacco tissue cultures //Physiol.Plantarum. 1962. 15. Р.473-497), дополненную, как и в предыдущей статье, 43 способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 М аденин сульфата, 10 способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 М бензиламинопурина, 2 способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 М индолилмасляной кислоты, 3% сахарозы и 0,6% агара при рН 5,7 (25° С, 16-часовой день). Для подготовки растений к замораживанию был использован метод холодовой акклиматизации Анжело (E.Angelo// Minn.Agr. Exp.Sta. Tech. Bul. 1939. 101. Р.7-19), в котором растения помещали на 1 неделю в климатическую камеру, где соблюдался следующий режим: 8 часов день при +25° С и 16 часов - ночь при -1° С. Изолированные меристемы 48 часов "предкультивировали" в условиях холодовой акклиматизации на среде МС дополненной 5% ДМСО, а затем переносили в 0,25 мл охлажденной жидкой среды в криоампулы (1,2 мл). Затем в течение 30 минут туда добавляли по каплям охлажденную до -1° С смесь криопротекторов - PGD. Криоампулы с меристемами, заполненные 1 мл PGD, замораживали со скоростью 0,8° С до -40° С и погружали в жидкий азот на один час. Оттаивание проводили в водяной бане: 60 сек при 60° С и затем - при 23° С. После оттаивания образцы смешивали с жидкой средой, подсушивали на фильтровальной бумаге и переносили на твердую питательную среду. Регенерацию растений из криосохраненных меристем проводили при условиях, примененных для этапа размножения. Неделя холодовой акклиматизации экспериментального материала, в данном варианте криосохранения меристем малины красной, позволила получать больше регенерантов (62,75%), чем без применения этого воздействия (43,75%). Однако уровень каллусообразования и в этом случае достигал в среднем 23,5% от числа выживших меристем, что увеличивает вероятность генетических изменений и снижает возможность сохранения сортовых свойств у посткриогенных регенерантов.

Следующий этап усовершенствования метода криосохранения меристем малины был представлен в 1993 году (Reed B.M. Responses to ABA and cold acclimation are genotype development for cryopreserved blackberry and raspberry meristems//Cryobiology. 1993. V.30. P.179-184).

Растения малины размножали на модифицированной среде Мурасиге и Скуга, дополненной 1 мг/л бензиламинопурина, 0,05 мг/л индолилуксусной кислоты, 0,01 мг/л гиббереловой кислоты, 3% сахарозы, витаминами, 3,5 г/л агар-агара и 1,45 г/л гельрита, в сосудах фирмы "Magenta" (+25° C, освещение: 30 способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 Е М-2s-2, 16 часов в день). Затем растения in vitro помещали на 1 неделю в климатическую камеру для холодовой акклиматизации при +22° С, освещении 20 способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 Е М-2s-2 - 8 часов в день и при температуре -1° С - 16 часов (ночь). Изолированные меристемы (0,8 мм) помещали на 48 часов на среду МС, дополненную 3,5 г/л агара, 1,75 г/л гельрита, 5% ДМСО и некоторыми регуляторами роста (абсцизовая кислота, бензиламинопурин). Затем, меристемы переносили в 0,25 мл жидкой среды в 1,2 мл криоампулы, помещенные на лед. Смесь криопротекторов - PGD(10% полиэтиленгликоля с М.В.8000, 10% глюкозы, 10% ДМСО, растворенных в воде и стерилизованных с помощью фильтра 0,45 способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 М) добавляли в течение 30 минут в криоампулу до 1,2 мл. После 30 минут периода уравновешивали на льду, образцы замораживали со скоростью 0,8° С /мин до -35° С в программируемом замораживателе и погружали в жидкий азот на 1 час. Ампулы с меристемами оттаивали 1 минуту в водяной бане при +45° С, а затем при +23° С до полного исчезновения льда. После оттаивания криопротекторы были заменены в ампулах жидкой средой МС, а затем меристемы, извлеченные из ампул, обсушивали на стерильной фильтровальной бумаге и помещали на среду восстановления для регенерации. В данной статье представлены данные, доказывающие, что использование для криосохранения меристем малины среды Мурасиге и Скуга существенно увеличивает количество выживших после жидкого азота меристем по сравнению со средой Андерсона. Положительного воздействия добавления бензиламинопурина в среду "предкультивирования" (48 часов) обнаружено не было. Однако добавление абсцизовой кислоты на этапе "предкультивирования" несколько увеличивало криоустойчивость меристем, изолированных от растений, культивированных при обычных условиях без использования холодовой акклиматизации. Еще раз было показано, что применение холодовой акклиматизации растений малины положительно воздействует на криоустойчивость меристем, изолированных из этих растений. В статье приведены только данные по посткриогенному выживанию меристем (% выживания после оттаивания), причем данные о каллусообразовании отсутствуют.

В последней из известных нам публикаций по криосохранению малины, предложено увеличить период холодовой акклиматизации для получения максимальной криоустойчивости меристем (Chang Y., Reed B.M. Cold acclimation improves the cryopreservation of in vitro - grown Pyrus and Rubus meristems / Cryopreservation of tropical plant germplasm. Ed. F.Engelmann and H.Takagi. Japan International Research Center for Agricultural Sciences Tsukuba, Japan. International Plant Genetic Resources Institute, Rome, Italy - 2000. - P.382-384).

Размноженные in vitro растения "акклиматизировали" не более 15 недель в климатической камере при +22° С с освещением 3 способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 mol m-2s-2 - 8 часов и при температуре -1° С 16 часов ночью перед криосохранением. Используя метод, изложенный Reed (1990), изолированные апексы подготавливали к замораживанию в течение 2 дней в холодовом инкубаторе с 5% ДМСО и 0,3 г/л гельрита. Затем апексы переносили в 1,2 мл криоампулу в 0,25 мл жидкой среды, куда в течение 30 минут по каплям добавляли 1,0 мл смеси криопротекторов - PGD (10% полиэтиленгликоля с М.В.8000, 10% глюкозы, 10% ДМСО). Образцы в криоампулах в течение 30 минут уравновешивали при 4° С, после чего криопротекторы были отобраны из ампулы до объема 1 мл. Криоампулы охлаждали медленно со скоростью 0,5° С/мин до - 35° С и затем погружали в жидкий азот (-196° С) на срок не менее 1 часа. Образцы оттаивали 1 мин в водяной бане при +45° С и затем 1 мин при 22° С, промывали в жидкой среде и помещали на среду восстановления. Выживаемость оценивали как % побегов выросших в течение 6 недель. В результате из криосохраненных меристем были получены 8-93% регенерантов, в зависимости от генотипа и длительности периода холодовой акклиматизации.

Недостатком этого способа, приведенного в разных вариантах, является высокий уровень каллусообразования у выживших апикальных меристем: от 8-19% до 23% (Reed B.M., Lagerstedt H.B., 1987; Reed B.M., 1988). Причиной этому является использование в процессе криосохранения во всех вариантах способа высокоосмотичной и высокотоксичной смеси криопротекторов, под названием PGD, которая способствует образованию каллуса при регенерации растений из криосохраненых меристем, а следовательно, ведет к увеличению вероятности генетических изменений и снижению возможности сохранения сортовых свойств у посткриогенных регенерантов.

Наиболее близким технологическим решением из известных нам является "способ криосохранения меристем земляники, изолированных из растений in vitro" (заявка на изобретение № 2002113550/13 от 24.05.2002 с решением о выдаче патента от 02.09.2003).

В этом способе маточные растения земляники, размноженные in vitro, закаливали в течение 1-2 месяца на модифицированной питательной среде, дополненной 6% сахарозой или глюкозой, обработку изолированных меристем перед замораживанием (18-19 часов) проводили на жидкой питательной среде с криопротекторами - 6% сахарозы или глюкозы и 5-7% ДМСО, апексы охлаждали в криоампулах, заполненных раствором 6% сахарозы или глюкозы и 7-9% ДМСО, содержащим лед, в программируемом замораживателе по оригинальной программе со скоростью 0,3-0,33° С/мин до (-38)-(-40)° С, затем со скоростью 9-11° С/мин до -75° С с погружением в жидкий азот (-196° С) на срок не менее часа, посткриогенное восстановление растений из оттаявших меристем, освобожденных от избытка криопротекторов, проводили на модифицированной питательной среде с 0,5-1 мг/л бензиламинопурина и 3%-ными глюкозой или сахарозой при 19-20° С, 16-часовом дне и освещенности 0,5-1 клк.

В результате этот способ позволил получить регенеранты из 62,5±9,0% криосохраненных меристем земляники 16 различных сортов.

Однако этот способ, хотя и позволяет избегать стадию каллусообразования, оказался неприемлем для криосохранения апексов малины красной, поскольку не позволял стабильно получать растения - регенеранты этого вида растений из меристем после жидкого азота.

Задачей, на решение которой направлено настоящее изобретение, является разработка метода криосохранения, который обеспечивает стабильное получение из меристематических апексов малины красной, после замораживания, хранения в жидком азоте и оттаивания, растений - регенерантов, принадлежащих сортам различной регенерационной способности (из каждой криоампулы, содержащей не менее 20 апикальных верхушек), минуя стадию каллусообразования.

Поставленная задача решается тем, что в способе криосохранения меристематических апексов, изолированных из закаленных in vitro растений проводят охлаждение апексов в криоампулах до сверхнизких температур, хранение ампул с меристемами в жидком азоте и посткриогенную регенерацию растений из меристем в следующем порядке:

закаливание растений-доноров в темноте 1-2 месяца на твердой агаризованной питательной среде, дополненной 6% сахарозой или глюкозой,

обработку изолированных меристем перед замораживанием - 18-20 часов на жидкой питательной среде с криопротекторами - 6% сахарозы или глюкозы и 5% ДМСО,

охлаждение апексов в герметично закрытых криоампулах, заполненных раствором 6% сахарозы и 7% ДМСО, содержащим лед, в программируемом замораживателе по оригинальной программе со скоростью 0,3-0,33° С/мин до - 38-40° С, затем со скоростью 9-11° С/мин до -75° С с погружением в жидкий азот (-196°С) на срок не менее часа,

посткриогенное восстановление растений из оттаявших меристем, освобожденных от избытка криопротекторов, первый этап которого проходит на модифицированной питательной среде, дополненной веществами цитокининового действия и 3% сахаров (сахарозой и, или глюкозой) при +19-20° С, 16-часовом дне и освещенности 0,5-1 клк,

причем при закаливании дополнительно использованы вещества цитокининового действия

На чертеже представлена принципиальная схема криосохранения меристем, изолированных из растений, культивированных и закаленных in vitro, включающая в себя не только этапы подготовки растительного материала к замораживанию, его хранения в жидком азоте и посткриогенного восстановления, но и все традиционные процедуры культивирования растений при клональном размножении in vitro. Эта схема представляет собой полный цикл преобразований растительного материала от обычного растения до растения, восстановленного после хранения в жидком азоте, способного нормально размножаться и плодоносить в грунте.

Суть настоящего изобретения в том, что предлагаемый способ криосохранения меристем малины красной представляет собой совокупность модифицированных этапов известных методов замораживания живых объектов и эффективно обеспечивает после процедуры криосохранения получение, минуя стадию каллусообразования, растений-регенерантов испытанных нами клонов малины красной, которые отличаются друг от друга регенерационной способностью, из каждой криосохраненной ампулы, содержащей не менее 20 меристем.

Заявленный способ отличается от прототипа тем, что растения - доноры меристем закаливают в течение 4-10 недель на питательной среде, дополненной веществами цитокининового действия.

Изобретение иллюстрируется следующими примерами.

Пример 1.

Растения малины красной сорта Скромница и селекционного клона М 2, отличающихся друг от друга различной регенерационной способностью, размножают in vitro на агаризованной питательной среде МС (табл. 1), дополненной 3% сахарозой и веществами цитокининового действия. Маточные растения малины, полученные в результате размножения, закаливают на питательной среде (ПС-1) с 6% сахарозой и 6-бензиламинопурином в течение 2 месяцев в темноте при температуре 4±4° С (табл. 1). Затем изолированные из них меристематические верхушки 18 часов культивируют на жидкой питательной среде (ПС-1), дополненной 6% сахарозой и 5% ДМСО (табл. 1) при 4±4° С в темноте и переносят в криоампулы с 6% сахарозы и 7% ДМСО. Криоампулы с меристематическими верхушками, содержащие лед, охлаждают в программируемом замораживателе ЗРК-1 со скоростью 0,3° С/мин до -40° С, а затем со скоростью 9° С/мин до -75° С и помещают на хранение в жидкий азот (-196° С). После криогенного хранения не менее часа ампулы с меристемами оттаивают в водяной бане при +38±2° С. Размороженные меристемы извлекают из ампул и освобождают от криопротекторов последовательным перемещением сначала на сухую стерильную фильтровальную бумагу, затем дважды на свежую полужидкую питательную среду с агарозой (ПС-3), дополненную 3% сахарозы и веществом цитокининового действия (табл. 1). После процедуры освобождения от криопротекторов меристемы помещают на среду ПС-3, дополненную 3% сахарозы и веществом цитокининового действия, для рекультивирования при 18° С 16-часовом дне и освещенности 0,5-1 клк. После месяца рекультивирования, минуя стадию каллусообразования, из 40-70% меристем клона М 2 и 50-100% меристем сорта Скромница были получены регенеранты (побеги с листьями), которые после размножения in vitro давали потомство, пригодное после процедуры акклиматизации для высадки в нестерильные условия.

Таблица 1
Питательные среды, использованные при криосохранении меристем земляники садовой Fragaria*ananassa Duch
Вещество, мг/лПитательные среды
 МС МС-1ПС-1ПС-2 ПС-3ПС-4
Аммоний азотнокислый NH431650 165016501650 16501650
Калий азотнокислый KNО3 19001900 190019001900 1900
Магний сернокислый MgSО4способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 2О 370370370 370370370
Калий фосфорнокислый КН2 РО4170 170170170 170170
Кальций хлористый СаСl2способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 2О 440440- -440440
Кальций азотнокислый Ca(NO 3)2способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 6H2O --708 708--
Железо сернокислое FeSO4 способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 7H2O 55.655.627.8 27.855.6 55.6
Трилон Б Na2 ЭДТА74.674.6 37.337.3 74.674.6
Марганец сернокислый MnSO4способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 2O 370370370 370370370
Натрий молибденовокислый Na 2MoO4способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 2H2O 0.250.250.25 0.250.25 0.25
Борная кислота Н 3ВО36.2 6.26.2 6.26.26.2
Цинк сернокислый ZnSO4 способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 2O 8.68.68.6 8.68.68.6
Калий йодистый KI0.83 0.830.83 0.830.830.83
Кобальт хлористый СоСl 2способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 6H2О 0.0250.0250.025 0.0250.025 0.025
Медь сернокислая CuSO 4способ криосохранения меристем, изолированных из растений малины   красной (rubus idaeus l.), in vitro, патент № 2248121 2O 0.0250.0250.025 0.0250.025 0.025
Тиамин 0.50.50.5 0.50.50.5
Пиридоксин0.5 0.50.50.5 0.50.5
Никотиновая кислота0.50.5 0.50.5 0.50.5
Аскорбиновая кислота1.01.0 1.01.0 1.01.0
Глицин 2.02.0 2.02.02.0 2.0
Мезоинозитол 100100100 100100100
Глюкоза- 30000-60000  30000
Сахароза30000- 60000- 30000-
6-бениламинопурин 2- +-1 -
Тидиазурон -0,2- +-0,1
Агароза- --- 40004000
Агар-агар 70007000 90009000- -
Диметилсульфоксид (ДМСО) --5% 7%--
5.6 5.66.06.0 5.65.6
Бидистиллированную воду добавляли до 10000 мл

Таблица 2
Регенерация растений из криосохраненных меристем методом замораживания, изложенным в представленном способе
Сорт, клонВариант способа криосохранения % регенерации растений* из 10 и более меристем из каждой криоампулысредний % посткриогенной регенерации
Скромница Из примера 150, 68, 86, 86, 89, 96, 100 82,1±6,6
 Из примера 2 38, 43, 58, 60, 68, 74, 7759,7±5,6
Клон М 2 Из примера 140, 46, 57, 70 53,25±6,6
  Из примера 225, 37, 56, 67 46,25±9,4
* При расчете процента регенерации регистрировали только апексы без признаков каллуса.

Пример 2.

Растения малины красной, принадлежащие к одному мериклону, размножают in vitro на агаризованной питательной среде МС-1 (табл. 1), дополненной 3% глюкозой и веществом цитокининового действия. Маточные растения малины, полученные в результате размножения, переносят на питательную среду (ПС-2) с 6 % глюкозой и тидиазуроном и закаливают их в течение 1 месяца в темноте при 4±4° С (табл. 1). Затем изолированные из них меристематические верхушки 19 часов культивируют на жидкой питательной среде (ПС-2), дополненной 6% глюкозой и 5% ДМСО (табл.1) при 4±4° С в темноте и переносят в криоампулы с 6% глюкозы и 7% ДМСО. Криоампулы с меристематическими верхушками, содержащие лед, охлаждают в программируемом замораживателе ЗРК-1 со скоростью 0,33° С/мин до -40° С, а затем со скоростью 11° С/мин до -75° С и помещают на хранение в жидкий азот (-196° С). После криогенного хранения не менее часа ампулы с меристемами оттаивают в водяной бане при +40° С. Размороженные меристемы извлекают из ампул и освобождают от криопротекторов последовательным перемещением сначала на сухую стерильную фильтровальную бумагу, затем дважды на свежую полужидкую питательную среду с агарозой (ПС-4), дополненную 3% глюкозы и веществом цитокининового действия (табл.1). После процедуры освобождения от криопротекторов меристемы помещают на среду ПС-4, дополненную 3% глюкозы и веществом цитокининового действия для рекультивирования при 20° С 16-часовом дне и освещенности 0,5-1,0 клк. После месяца культивирования из 38-77% меристем малины красной сорта Скромница и 25-67% клона М-2 были восстановлены растения с листьями и корнями, минуя стадию каллусообразования (табл. 2).

Из результатов табл.2 следует, что предлагаемый способ криосохранения позволяет после криогенного хранения (не менее 20 меристем в каждой ампуле) восстанавливать растения разных клонов (сортов), различающихся по регенерационной способности, минуя стадию каллусообразования.

Класс A01H4/00 Разведение растений из тканевых культур

способ регенерации микропобегов hyssopus officinalis l. в условиях in vitro -  патент 2529837 (27.09.2014)
способ получения лапчатки белой (potentilla alba) -  патент 2525676 (20.08.2014)
способ получения форм картофеля in vitro, устойчивых к возбудителям фитофтороза и альтернариоза -  патент 2524424 (27.07.2014)
способ размножения цимбидиума in vitro -  патент 2523604 (20.07.2014)
способ микроклонального размножения подвоев яблони -  патент 2523305 (20.07.2014)
способ длительного хранения in vitro растений осины -  патент 2522823 (20.07.2014)
способ микрочеренкования винограда in vitro -  патент 2521992 (10.07.2014)
способ получения растений-регенерантов земляники (in vitro) -  патент 2516341 (20.05.2014)
способ микроклонального размножения ольхи черной in vitro -  патент 2515385 (10.05.2014)
способ введения в культуру клеток льна многолетнего -  патент 2506741 (20.02.2014)
Наверх