способ получения синтетических минералов

Классы МПК:C01B13/28 с использованием плазмы или электрического разряда
Автор(ы):, , , , , ,
Патентообладатель(и):Белгородский Государственный университет (RU)
Приоритеты:
подача заявки:
2003-07-28
публикация патента:

Изобретение может быть использовано в технике и ювелирном деле. Тонкодисперсный порошок шихты смешивают с вспомогательным потоком плазмообразующего газа - аргоном и подают на линию подачи плазмообразующего газа в высокотемпературную зону плазменного факела плазменной горелки. Синтез проводят при давлении аргона 0,22-0,24 МПа и его расходе 2,2-2,4 м3/час. Предложенный способ позволяет повысить качество синтетических минералов, а также сократить длительность процесса производства. 3 табл., 1 ил.

способ получения синтетических минералов, патент № 2248933

способ получения синтетических минералов, патент № 2248933

Формула изобретения

Способ получения синтетических минералов, включающий смешение компонентов шихты, обработку шихты плазменным факелом, отличающийся тем, что тонкодисперсный порошок шихты предварительно смешивают с вспомогательным потоком плазмообразующего газа - аргоном, и подают на линию подачи плазмообразующего газа в высокотемпературную зону плазменного факела плазменной горелки, а синтез производят при давлении аргона 0,22-0,24 МПа и его расходе 2,2-2,4 м 3/ч.

Описание изобретения к патенту

Изобретение относится к области получения синтетических минералов и может быть использовано в технике и ювелирном деле.

В настоящее время существует ряд способов изготовления синтетических минералов, такие как способы Вернейля, Чохральского, гидротермальный способ, способ по патенту РФ №2104942.

Известен способ синтеза чистых кристаллических материалов по патенту РФ №2104942, включающий смешивание компонентов шихты, брикетирование, плавление брикета плазменным факелом под давлением плазмообразующего газа 0,24-0,26 МПа, обработку полученного расплава с целью гомогенизации плазменным факелом в течение всего процесса синтеза. Однако, несмотря на неплохое качество конечного продукта, способ имеет следующие недостатки: длительность и трудоемкость брикетирования, растрескивание в процессе плавления брикета шихты и выдувание ее плазмообразующими газа из тигля.

Наиболее близким техническим решением является способ получения синтетических минералов по методу Вернейля, заключающийся в смешивании компонентов шихты заданного состава, подаче в печную камеру шихты из воронки, просыпании тонкодисперсного порошка через плазменный факел до спекания и кристаллизации на керамическом штифте ("свече"), на который заранее помещают затравку. При этом кристалл "растет" в вертикальном направлении по мере подачи материала. Отжиг осуществляют в печной камере путем выведения (опускания) штифта с затравкой из зоны синтеза [1].

Недостатками известного способа являются: длительность синтеза, значительные напряжения в растущих кристаллах, возникающие при высоких температурах обычного пламени Н2 2, в результате чего образуется большое количество отходов при вырезке деталей из конечного продукта.

Технической задачей данного изобретения является расширение арсенала способов получения синтетических минералов с повышенным качеством конечного продукта.

Дополнительным преимуществом предлагаемого способа является сокращение времени процесса, снижение напряжений в конечном продукте - кристалле и, как следствие, - увеличение выхода конечного продукта.

Поставленная задача решается за счет того, что в способе получения синтетических минералов, заключающемся в приготовлении шихты путем смешивания компонентов заданного стехиометрического состава, обработке шихты факелом плазмы под давлением плазмообразующего газа, порошок тонкодисперсной шихты предварительно смешивается с вспомогательным потоком плазмообразующего газа - аргоном и поступает дополнительным потоком на линию подачи плазмообразующего газа в зону плазменного факела плазменной горелки, где под давлением 0,22-0,24 МПа и при расходе аргона 2,2-2,4 м3/час происходит синтез с последующим сбором расплава и его кристаллизации в тигле.

Отличительными признаками предлагаемого способа являются предварительное смешивание порошка тонкодисперсной шихты с плазмообразующим газом и ввод на линию подачи плазмообразующего газа в зону плазменного факела плазматрона тонкодисперсного порошка шихты за счет вспомогательного потока плазмообразующего газа без нарушения режима и стабильности работы плазматрона. В результате существенно увеличивается время пребывания шихты в аргоновой плазме, что ускоряет ее плавление и выход конечного продукта.

Таким образом, основным отличительным признаком предлагаемого изобретения является способ подачи шихты в плазменную горелку, позволяющий сократить расход плазмообразующего газа, а также время синтеза с одновременным получением синтетических минералов повышенного качества.

Проведенный анализ известных способов получения синтетических минералов позволяет сделать заключение о соответствии заявляемого изобретения критерию “новизна”.

Изобретательский уровень подтверждается тем, что изменение способа подачи шихты в плазменную горелку не только позволяет получить высококачественный конечный продукт с гораздо более низкими напряжениями, но и сократить время синтеза, а также расход плазмообразующего газа.

Оптимальными условиями синтеза, экспериментально полученными, являются давление аргона 0,22-0,24 МПа при его расходе 2,2-2,4 м3/час. При данных параметрах работы плазматрона время синтеза составляет 0,15-0,20 часа (8-12 мин) (см. табл.1).

На чертеже показана схема получения синтетических минералов.

Тонкодисперсный порошок шихты подается порошковым питателем 1 по трубопроводу 2 на линию подачи плазмообразующего газа 3 вспомогательным потоком плазмообразующего газа 4 в плазменную горелку 5, где происходит плавление шихты в плазменном факеле 6, сбор и кристаллизация расплава 7 в тигле 8.

Пример 1. Синтез сапфира синего цвета

Как известно [1], сапфир является разновидностью корундов и является драгоценным минералом. Красящими компонентами в сапфире являются оксиды железа (Fe2 О3) и титана (TiO2) в соотношении 9:1, которые окрашивают сапфир в синие и фиолетовые цвета.

Исходным материалом служил порошок оксида алюминия зернового состава от 20 до 100 мкм. Красящими компонентами служили оксиды титана (ТiO2) и оксиды железа (Fе2О 3), которые брали в соотношении 1:9. Компоненты смешивали в шаровой мельнице с уралитовыми шарами в течение 30 мин. Исходный состав шихты составлял (маc.%): Аl2О3 - 99,88; ТiO2 - 0,012; Fе2О3 - 0,108. Шихту помещали в порошковый питатель и вводили на линию подачи плазмообразующего газа в зону синтеза (зону плазменного факела) с помощью вспомогательного потока плазмообразующего газа. Для синтеза сапфира использовали электродуговой плазмотрон УПУ - 8М. Параметры работы плазмотрона следующие: рабочее напряжение 30-32 В, ток - 400-500 А. Плазмообразующим газом служил аргон, расход которого составил 2,2-2,4 м3/час при давлении в зоне плазменного факела 0,22-0,24 МПа. Расход воды на охлаждение - 0,6 м3/час. Полученный расплав в виде диспергированных капель накапливался в корундовом тигле, расположенном от среза плазменной горелки на расстоянии 10-12 мм. В тигле происходила кристаллизация конечного продукта.

Аналогично проводили синтез сапфира из шихты ранее указанного состава по известному способу (патент №2104942). Затем рентгенофазовым анализом определяли фазовый состав сапфира, плотность, микротвердость, показатель преломления и напряжения в конечном продукте.

Сравнительная характеристика известного и предлагаемого способов получения сапфира представлена в табл.2.

Пример 2. Синтез шпинели красного цвета

Как известно, благородная шпинель красного цвета состава MgAl2O4 является драгоценным минералом (1).

Исходным материалом служила стехиометрическая смесь оксида алюминия и магния (Al2O3· MgO) зерновым составом от 20 до 100 мкм, красящим компонентом - оксид хрома (Сr2О3). Компоненты смешивали в шаровой мельнице с уралитовыми шарами в течение 30 минут. Исходный состав шихты составлял (мас.%) Аl2 O3 - 72,85; MgO - 27,05; Сr2О3 - 0,1.

Шихту помещали в порошковый питатель и вводили на линию подачи плазмообразующего газа в зону синтеза (зону плазменного факела) с помощью вспомогательного потока плазмообразующего газа. Для синтеза шпинели был использован электродуговой плазматрон УПУ - 8М со следующими параметрами работы: рабочее напряжение 30-32 В, ток 400-500 А. Плазмообразующим газом служил аргон, общий расход которого составил 2,2 м/час при давлении в зоне плазменного факела 0,22-0,24 Мпа. Расход воды на охлаждение - 0,6 м3/час.

Полученный расплав в виде диспергированных частиц накапливался в корундовом тигле, расположенном на расстоянии 10-20 мм, где и происходила кристаллизация конечного продукта.

Свойства благородной шпинели красного цвета, полученной известным методом и предлагаемым способом, представлены в таблице 3.

Литература

1. Вильке К.Т. Выращивание кристаллов. - М.: Недра, 1977. - с.388-402.

2. Патент РФ №2104942. Способ синтеза чистых кристаллических материалов на основе тугоплавких оксидов. / Крохин В.П., Бессмертный B.C., Пучка О.В. - Бюл. №5. - 20.02.98.

Таблица 1
Влияние параметров синтеза на выход конечного продукта
№№ п/пДавление газа, МПа Расход газа для гомогенизации расплава или плавления шихты, м3/час Время синтеза, час
1. Предлагаемый способ0,18 1,80,24
 0,20 2,00,21
 0,22 2,20,15
 0,24 2,40,20
 0,26 2,60,23
 0,28 2,80,25
Таблица 2
Характеристика предлагаемого и известных способов получения сапфира
№ п/пСвойства и параметрыЕд. изм. Патент №2104942Метод Вернейля Предлагаемый способ
1Зерновой состав исходных продуктов мкм20-100 способ получения синтетических минералов, патент № 2248933 2020-100
2Показатель преломления -1,760-1,762 1,87-1,881,763-1,765
3Плотность кг/м33,991 3,9933,994
4Микротвердость МПа23590 2361023630
5Время синтеза час0,5-0,6 5-100,15-0,20
6Напряжение в монолите МПа2-310-20 1,0-1,8
7 Отходы при вырезке деталей %30-40 75-8020-25
8Цвет сапфира  Синий (темно-синий) СинийСиний (темно-синий)
9Плазмообразующий газ -аргонН 2О2 аргон

Таблица 3
№п/п Свойства и параметрыЕд.изм. Метод ВернейляПредлагаемый способ
1Зерновой состав исходных продуктовмкмспособ получения синтетических минералов, патент № 2248933 2020-100
2Показатель преломления -1,723-1,7261,722-1,730
3Плотность Кг/м3 3591-35943590-3640
4Микротвердостьмпа 16040-1785018080
5Время синтеза час5-10 0,15-0,20
6 Напряжение в монолитеМПа 10-201,2-1,9
7Отходы при вырезке деталей %75-8020-25
8Цвет шпинели -красный красный
9 Плазмообразующий газ- ацетиленаргон

Класс C01B13/28 с использованием плазмы или электрического разряда

Наверх