самодифракционная система и способ детектирования малых перемещений

Классы МПК:G01V8/00 Разведка или обнаружение оптическими средствами
Автор(ы):, ,
Патентообладатель(и):Красноярский государственный университет (RU)
Приоритеты:
подача заявки:
2003-07-21
публикация патента:

Изобретение относится к измерительной технике, в частности к способам определения малых перемещений объектов с использованием когерентных источников света и явления самодифракции. Заявлена самодифракционная система, содержащая источник когерентного излучения, коллиматор, светоделитель, зеркало, фотоприемник и регистратор уровня сигнала. Самодифракционная система дополнительно содержит реверсивную светочувствительную среду, расположенную таким образом, что коллимированный лазерный пучок, расщепленный на светоделителе на два пучка, сводится с помощью зеркала в один. Сходящиеся пучки формируют динамическую голограмму, способную обеспечить самодифракцию. Также заявлен способ детектирования малых перемещений, в котором с помощью двух сходящихся когерентных пучков формируют регулярно неоднородное пространственное интерференционное поле. В реверсивной светочувствительной среде записывают динамическую голограмму, способную обеспечить самодифракцию. Используют фотоприемник для преобразования интенсивности одного из самодифрагирующих пучков в электрический сигнал. Измеряют амплитуду изменений электрического сигнала фотоотклика одного из самодифрагирующих пучков относительно уровня сигнала, достигнутого к моменту возмущения. Детектирование малых перемещений осуществляют по срыву величины дифракционной эффективности относительно уровня сигнала, достигнутого к моменту возмущения. Технический результат изобретения заключается в повышении чувствительности способа и упрощении конструкции измерительного устройства. 2 н.п. ф-лы, 1 ил.

самодифракционная система и способ детектирования малых перемещений, патент № 2249238

самодифракционная система и способ детектирования малых перемещений, патент № 2249238

Формула изобретения

1. Самодифракционная система, содержащая источник когерентного излучения, коллиматор, светоделитель, зеркало, фотоприемник, регистратор уровня сигнала, отличающаяся тем, что содержит реверсивную светочувствительную среду, расположенную таким образом, что коллимированный лазерный пучок, расщепленный на светоделителе на два пучка, сводится с помощью зеркала в один, причем сходящиеся пучки формируют динамическую голограмму, способную обеспечить самодифракцию, интенсивность которой зависит от дифракционной эффективности динамической голограммы, определяемой относительным перемещением светочувствительной среды и области пересечения сходящихся пучков.

2. Способ детектирования малых перемещений, заключающийся в том, что с помощью двух сходящихся когерентных пучков формируют регулярно неоднородное пространственное интерференционное поле, отличающийся тем, что в реверсивной светочувствительной среде записывают динамическую голограмму, формируемую сходящимися пучками когерентного излучения, способную обеспечить самодифракцию, интенсивность которой зависит от дифракционной эффективности динамической голограммы, определяемой относительными перемещениями светочувствительной среды и области пересечения сходящихся пучков, используют фотоприемник для преобразования интенсивности одного из самодифрагирующих пучков в электрический сигнал, измеряют амплитуду изменений электрического сигнала фотоотклика одного из самодифрагирующих пучков относительно уровня сигнала, достигнутого к моменту возмущения, причем детектирование малых перемещений осуществляют по срыву величины дифракционной эффективности относительно уровня сигнала, достигнутого к моменту возмущения.

Описание изобретения к патенту

Изобретение относится к области сейсмологии, в частности к средствам регистрации колебаний грунта и сооружений, вызванных землетрясениями и другими видами возмущений, с использованием когерентных источников света.

Известен оптико-голографический способ определения амплитуд вибраций и голографическая система для его осуществления. Способ определения амплитуд вибраций заключается в том, что формируют и преобразуют в электрический сигнал оптические интерференционные поля, возникающие при интерференции волн, рассеиваемых вибрирующим объектом, и восстановленной с голограммы невозмущенного состояния объекта.

Голографическая система, реализующая способ определения амплитуд вибраций, содержит оптически связанные голографический интерферометр в реальном времени и фотоприемник, выходной сигнал с которого подается на вход электронно-аналитического устройства, определяющего амплитуды вибраций объекта [А.с. СССР № 1392389 A1, G 03 Н 5/00].

Однако известное устройство предполагает использование достаточно сложных устройств - голографического интерферометра реального времени и электронно-аналитической системы, определяющей амплитуды колебаний.

Известно устройство - геофон и реализованный с его помощью способ регистрации колебаний грунта и других видов колебаний, реализующее аналог интерферометра Майкельсона, в котором одно из зеркал установлено на подвижном грузе, колебания которого изменяют параметры отраженного пучка, интерферирующего с пучком, восстановленным с голограммы исходного состояния подвижного груза. Интенсивность интерферирующих пучков зависит от мгновенного положения подвижного груза, регистрируется фотоприемником, электрический сигнал с которого анализируется регистрирующим блоком и по величине фототока определяется амплитуда колебаний. Это устройство и реализованный способ будут взяты в качестве прототипа [А.с. СССР № 1741095 A1, G 01 V 1/16, G 03 Н 3/00].

Недостатком оптико-голографического геофона является использование достаточно сложных устройств - голографического интерферометра и электронно-аналитической системы, определяющей амплитуды колебаний, недостаточная чувствительность способа и сложность регистрации колебаний.

Технический результат изобретения заключается в повышении чувствительности метода регистрации малых колебаний, упрощении конструкции устройства для его реализации.

Технический результат достигается тем, что в самодифракционной системе, содержащей источник когерентного излучения, коллиматор, светоделитель, зеркало, фотоприемник и регистратор уровня сигнала, новым является то, что самодифракционная система содержит реверсивную светочувствительную среду, расположенную таким образом, что коллимированный лазерный пучок, расщепленный на светоделителе на два пучка, сводится с помощью зеркала в один, причем сходящиеся пучки формируют динамическую голограмму, способную обеспечить самодифракцию, интенсивность которой зависит от дифракционной эффективности динамической голограммы, определяемой относительными перемещениями светочувствительной среды и области пересечения сходящихся пучков.

Технический результат достигается тем, что в способе детектирования малых перемещений с помощью двух сходящихся когерентных пучков формируют регулярно неоднородное пространственное интерференционное поле, новым является то, что в реверсивной светочувствительной среде записывают динамическую голограмму, формируемую сходящимися пучками когерентного излучения, способную обеспечить самодифракцию, интенсивность которой зависит от дифракционной эффективности динамической голограммы, определяемой относительными перемещениями светочувствительной среды и области пересечения сходящихся пучков, используют фотоприемник для преобразования интенсивности одного из самодифрагирующих пучков в электрический сигнал, измеряют амплитуду изменений электрического сигнала фотоотклика одного из самодифрагирующих пучков относительно уровня сигнала, достигнутого к моменту возмущения, причем детектирование малых перемещений осуществляют по срыву величины дифракционной эффективности относительно уровня сигнала, достигнутого к моменту возмущения.

В самодифракционном способе определения малых перемещений два сходящихся пучка когерентного излучения в освещенной части объема реверсивной светочувствительной среды формируют динамические регулярные пространственные неоднородности показателя преломления и оптической плотности среды (фазовые и амплитудные голограммы), на которых происходит дифракция этих же пучков (самодифракция), интенсивность которых зависит от дифракционной эффективности динамической голограммы, определяемой относительными перемещениями светочувствительной среды и области пересечения сходящихся пучков.

Интенсивность одного из самодифрагирующих пучков с помощью фотоприемника преобразуется в электрический сигнал, связанный с относительными перемещениями светочувствительной среды и области пересечения сходящихся пучков. Изменения сигнала во времени пропорциональны величине относительного перемещения области пересечения сходящихся пучков и реверсивной светочувствительной среды.

Самодифракционный способ определения малых перемещений использует явление динамической самодифракции двух когерентных пучков в светочувствительной среде, в которой интервалы времени записи и релаксации динамической голограммы сравнимы по величине и обеспечивают достаточное изменение дифракционной эффективности [Органические фотохромы. Под ред. А.В.Ельцова. Л.: Химия, 1982. Dorion G.H., Wiebe A.F. - In: Photochromism-Optical and Photographic Application. N.Y.: Focal Press, 1970, p.120].

На чертеже представлена принципиальная схема устройства, реализующего самодифракционный способ детектирования малых перемещений.

Самодифракционная система детектирования малых перемещений содержит источник когерентного излучения (лазер) 1, коллиматор 2, светоделитель 3 и зеркало 4, реверсивную светочувствительную среду 5, фотоприемник 6, регистратор уровня сигнала 7.

Устройство работает следующим образом. Лазерный пучок от источника 1 проходит через коллиматор 2, расщепляется на светоделителе 3 на два пучка, и с помощью зеркала 4 оба пучка сводятся в реверсивной светочувствительной среде 5. Суперпозиция двух плоскопараллельных волн в освещенной части объема формирует интерференционное поле с синусоидальной модуляцией интенсивности. Реверсивная светочувствительная среда под воздействием интерференционного поля модифицируется и в освещенной ее части появляется область с модуляцией показателя преломления и оптической плотности. За время, характерное для данной среды, в освещенной части объема записывается амплитудно-фазовая голограмма плоского зеркала 4, представляющая собой объемную дифракционную решетку, на которой оба пучка дифрагируют. Формируется совокупность дифрагированных пучков, пространственное распределение которых в разных порядках m определяется формулой

dsinсамодифракционная система и способ детектирования малых перемещений, патент № 2249238=mсамодифракционная система и способ детектирования малых перемещений, патент № 2249238,

где d - период дифракционной решетки, зависящий от угла между сходящимися пучками и длины волны самодифракционная система и способ детектирования малых перемещений, патент № 2249238, d=самодифракционная система и способ детектирования малых перемещений, патент № 2249238/2sin(самодифракционная система и способ детектирования малых перемещений, патент № 2249238/2).

Детектирование малых перемещений осуществляется по срыву величины дифракционной эффективности относительно уровня сигнала, достигнутого к моменту возмущения.

Класс G01V8/00 Разведка или обнаружение оптическими средствами

модульная донная станция -  патент 2521218 (27.06.2014)
способ дистанционного определения характеристик среды открытого водоема -  патент 2503041 (27.12.2013)
способ исследования керна горных пород -  патент 2501046 (10.12.2013)
способ дистанционного поиска новых месторождений нефти и газа -  патент 2498358 (10.11.2013)
способ исследования скважин оптическими методами для определения количества остаточных извлекаемых запасов разрабатываемого месторождения -  патент 2496982 (27.10.2013)
датчик для использования с автоматической дверью -  патент 2471208 (27.12.2012)
способ поиска подземных вод -  патент 2465621 (27.10.2012)
способ определения источников выбросов в атмосферу по изображениям мегаполисов -  патент 2463630 (10.10.2012)
способ генерирования численных псевдокернов с использованием изображений скважины, цифровых образов породы и многоточечной статистики -  патент 2444031 (27.02.2012)
система определения координат трассы подземного трубопровода -  патент 2437127 (20.12.2011)
Наверх