способ электрохимического получения нитрата серебра и гидроксида натрия

Классы МПК:C25B1/00 Электролитические способы получения неорганических соединений или неметаллов
C25B1/16 гидроксиды
Автор(ы):, ,
Патентообладатель(и):Пензенский Государственный Университет (RU)
Приоритеты:
подача заявки:
2004-03-29
публикация патента:

Изобретение относится к технологии электрохимических производств и может быть применено для получения нитрата серебра и гидроксида натрия в трехкамерном электролизере. Водный раствор нитрата натрия подают в среднюю камеру трехкамерного электролизера. Под действием электрического тока катионы натрия перемещаются через катионообменную мембрану в катодную камеру, где происходит взаимодействие ионов натрия и гидроксильных ионов с образованием гидроксида натрия. Нитрат ионы под действием тока перемещаются через анинообменную мембрану в анодную камеру, где они взаимодействуют с ионами серебра, полученными в результате анодного растворения серебра, с образованием нитрата серебра. Технический эффект - одновременное получение нитрата серебра и гидроксида натрия. 3 з.п. ф-лы, 1 ил.

способ электрохимического получения нитрата серебра и гидроксида   натрия, патент № 2252979

способ электрохимического получения нитрата серебра и гидроксида   натрия, патент № 2252979

Формула изобретения

1. Способ электрохимического получения нитрата серебра и гидроксида натрия, заключающийся в электролизе водного раствора соли щелочного металла в камерном электролизере катионообменной мембраной с получением гидроксида натрия в катодной камере и при подаче в катодную камеру воды, отличающийся тем, что электролиз ведут в трехкамерном электролизере с серебряным анодом, с подачей в анодную камеру воды, подкисленной азотной кислотой, в среднюю камеру - раствора нитрата натрия.

2. Способ по п.1, отличающийся тем, что рН в анолите поддерживают в пределах 2-2,5.

3. Способ по п.1, отличающийся тем, что в качестве разделительной перегородки катодной и средней камер используют катионообменную мембрану МК-40, а в качестве разделительной перегородки средней и анодной камер - анионообменную мембрану МА-40.

4. Способ по п.1, отличающийся тем, что в качестве соли щелочного металла используют нитрат натрия, являющийся отходом производства при получении порошка серебро-оксид кадмия в производстве металлокерамических электрических контактов.

Описание изобретения к патенту

Предлагаемый способ относится к технологии электрохимических производств и может быть применен для получения нитрата серебра и гидроксида натрия в трехкамерном электролизере для создания экологически безопасной технологии получения порошка серебро-оксид кадмия в производстве металлокерамических электрических контактов [1-3].

Из известных наиболее близким является способ получения водного раствора гидроксида натрия и углекислого газа (номер публикации 2002112284, дата публикации 27.01.2002 г., регистрационный номер заявки 2002112284/15 от 06.05.2002 г. Автор Мазанко А.Ф. и др.), согласно которому электролиз водного раствора карбоната натрия ведут в двухкамерном электролизере с катионообменной мембраной и с получением гидроксида натрия в катодной камере и углекислого газа в анодной камере, при этом электролиз ведут при подаче в анодную камеру карбоната натрия и в катодную камеру - воды.

Однако этот способ не позволяет получать в катодной камере раствор гидроксида натрия, а в анодной камере раствор нитрата серебра.

Техническим результатом предлагаемого способа является получение нитрата серебра и гидроксида натрия в трехкамерном электролизере, используемом в технологии получения порошка серебро-оксид кадмия в производстве металлокерамических электрических контактов.

Сущность предлагаемого способа заключается в том, что электролиз водного раствора соли щелочного металла осуществляют в камерном электролизере с катионообменной мембраной с получением гидроксида натрия в катодной камере и при подаче в катодную камеру воды, согласно предлагаемому изобретению электролиз ведут в трехкамерном электролизере с серебряным анодом, с подачей в анодную камеру воды, подкисленной азотной кислотой, в среднюю камеру - раствора нитрата натрия.

При этом рН в анолите поддерживают в пределах 2-2,5.

Кроме того, в качестве разделительной перегородки катодной и средней камер используют катионообменную мембрану МК-40, а в качестве разделительной перегородки средней и анодной камер - анионообменную мембрану МА-40.

При этом в качестве соли щелочного металла используют нитрат натрия, являющийся отходом производства при получения порошка серебро-оксид кадмия в производстве металлокерамических электрических контактов.

Такое сочетание новых признаков с известными позволяет получать одновременно нитрат серебра и гидроксид натрия, создать экологически безопасное производство получения порошка серебро-оксид кадмия за счет использования отхода производства - нитрата натрия, получаемого в виде фильтрата при осаждении гидроксида серебра и гидроксида кадмия, в процессе получения нитрата серебра и гидроксида натрия в трехкамерном электролизере и значительно снижать потребление гидроксида натрия на осаждение гидроксидов серебра и кадмия за счет дополнительного получения его в катодной камере электролизера.

Предлагаемый способ электрохимического получения нитрата серебра и гидроксида натрия в трехкамерном электролизере иллюстрируется чертежом, где показана схема его осуществления: 1 - катодная камера, 2 - катод, 3 - катионитовая мембрана МК-40, 4 - средняя камера, 5 - анионитовая мембрана МА-40, 6 - анодная камера, 7 - анод, 8 - корпус электролизера

Электролизер состоит из трех камер - анодной, катодной и средней. Анодная камера 6 отделена от средней камеры 4 анионитовой мембраной МА-40 5, которая пропускает в анодную камеру из средней камеры под действием тока нитрат ионы и не пропускает из анодной камеры в среднюю камеру катионы серебра.

Катодная камера 1 отделена от средней камеры катионитовой мембраной МК-40, которая пропускает в катодную камеру из средней камеры под действием тока ионы натрия и не пропускает из катодной камеры в среднюю камеру гидроксид ионы.

Способ осуществляется следующим образом. В начале процесса камеры электролизера заливают растворами: средняя камера - концентрированным раствором нитрата натрия, анодная камера - водой, подкисленной азотной кислотой до рН 2-2,5, катодная камера - слабым раствором гидроксида натрия. Затем включается постоянный ток. Электролиз ведут при плотности тока на мембранах 1 А/дм2 и электродах 2 А/дм 2.

На аноде протекает реакция окисления (растворения) серебра

способ электрохимического получения нитрата серебра и гидроксида   натрия, патент № 2252979

В объеме анолита образующиеся ионы серебра соединяются с нитрат - ионами, образуя нитрат серебра:

способ электрохимического получения нитрата серебра и гидроксида   натрия, патент № 2252979

На катоде протекает реакция восстановления ионов водорода или молекул воды с выделением водорода:

способ электрохимического получения нитрата серебра и гидроксида   натрия, патент № 2252979

В объеме католита образующийся избыток гидроксильных ионов, которые соединяются с ионами натрия, поступающих из средней камеры, образуют гидроксид натрия

способ электрохимического получения нитрата серебра и гидроксида   натрия, патент № 2252979

В процессе электролиза, по достижении требуемой концентрации нитрата серебра в анодной камере, в нижнюю часть анодной камеры непрерывно подают подкисленную воду, а из штуцера в верхней части непрерывно отводят концентрированный раствор нитрата серебра; в нижнюю часть средней камеры непрерывно подают концентрированный раствор нитрата натрия, а из штуцера верхней части средней камеры непрерывно отводят разбавленный раствор нитрата натрия; в нижнюю часть катодный камеры непрерывно подают дистиллированную воду, а из штуцера верхней части катодной камеры непрерывно отводят концентрированный раствор гидроксида натрия.

Таким образом в процессе электролиза в анодной, средней и катодной камерах поддерживают рабочую концентрацию нитрата серебра, нитрата натрия и гидроксида натрия.

Процесс электролиза осуществляется при температуре электролитов 30-40°С.

Выбор температуры 30-40°С обусловлен необходимостью поддерживать оптимальный режим электролиза. Если температура электролита будет выше 40°С, то ионообменные мембраны набухают и выходят из строя. Если температура электролита будет меньше 30°С, то уменьшается диффузия ионов серебра с поверхности анода в объем электролита анодной камеры, серебряный анод покрывается солями нитрата серебра, что приводит к снижению анодной плотности тока и соответственно к снижению скорости растворения серебра.

Пример.

Метод электрохимического получения нитрата серебра и гидроксида натрия осуществляют следующим образом. Перед началом электролиза в анодную камеру заливают раствор нитрата серебра концентрацией 100 г/л и рН 2-2,5, в среднюю камеру - раствор нитрата натрия концентрацией 200-250 г/л, в катодную камеру - раствор гидроксида натрия концентрацией 35 г/л. Температура растворов электролитов 35-40°С.

В анодную камеру завешивают серебряный анод и подключают его к положительному полюсу источника постоянного тока, в катодную камеру - лист из нержавеющей стали и подключают его к отрицательному полюсу источника тока. Температуру растворов электролитов доводят до 35-40°С и в процессе работы ее поддерживают змеевиком. Затем включают источник тока. Устанавливают плотность тока на мембранах 1,0 А/дм2, при этом на электродах плотность тока может автоматически устанавливаться в пределах 2,0-3,0 А/дм 2. После начала электролиза начинают непрерывно подавать из емкостей дозаторов: в нижнюю часть анодной камеры подкисленную воду до рН 2-2,5, в нижнюю часть средней камеры - раствор нитрата натрия концентрацией 200-250 г/л, в нижнюю часть катодной камеры - дистиллированную воду. При этом из верхних частей камер будет самотеком отводиться в специальный сборник: из анодной камеры - раствор нитрата серебра концентрацией 90-100 г/л (по металлу), из катодной камеры - раствор гидроксида натрия концентрацией 30-35 г/л, из средней камеры - раствор нитрата натрия концентрацией 140-190 г/л.

Перед началом электролиза в анодную камеру можно залить дистиллированную воду, подкисленную азотной кислотой до рН 2-2,5. При этом непрерывную подачу подкисленной воды в нижнюю часть анодной камеры будут осуществлять после достижения концентрации нитрата серебра 100 г/л (по металлу).

Процесс электролиза ведут до получения необходимого количества соли нитрата серебра и гидроксида натрия.

Предлагаемый способ обеспечивает технический эффект и может быть осуществлен с помощью известных в технике средств.

Источники информации

1. В.А.Бродов, К.В.Чубарь, В.И.Коган, И.П.Мелашко, В.В.Трофимов. Свойства и производства металлокерамических контактов серебро - окись кадмия, серебро - окись меди и серебро - никель с мелкодисперсной структурой // Сб.: Электрические контакты. - М.: Энергия, 1967, c.408-413.

2. Е.В.Макаров, Ю.В.Онуфриенко, Н.Н.Смага, Б.А.Юдин. Новые композиции для контактов с мелкодисперсной структурой // Сб.: Электрические контакты. - М.: Энергия, 1967. - С.414-420.

3. Н.Н.Смага, В.П.Корниенко, Б.А.Юдин. Способ изготовления шихты для металлокерамических контактов. Авт. свид. №150953, Бюл. изобр. №20, 1962.

Класс C25B1/00 Электролитические способы получения неорганических соединений или неметаллов

способ получения йодирующего агента -  патент 2528402 (20.09.2014)
способ получения жидкого средства для очистки воды -  патент 2528381 (20.09.2014)
способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале -  патент 2525543 (20.08.2014)
бортовая электролизная установка космического аппарата -  патент 2525350 (10.08.2014)
способ получения магнетита -  патент 2524609 (27.07.2014)
способ электролиза водных растворов хлористого водорода или хлорида щелочного металла в электролизере и установка для реализации данного способа -  патент 2521971 (10.07.2014)
способы получения водорода из воды и преобразования частоты, устройство для осуществления первого способа (водородная ячейка) -  патент 2521868 (10.07.2014)
способ и устройство для получения водорода из воды -  патент 2520490 (27.06.2014)
способ преобразования солнечной энергии в химическую и аккумулирование ее в водородсодержащих продуктах -  патент 2520475 (27.06.2014)
активация катода -  патент 2518899 (10.06.2014)

Класс C25B1/16 гидроксиды

способ получения гидроксида лития высокой чистоты и соляной кислоты -  патент 2470861 (27.12.2012)
электрохимический способ получения гидроксида алюминия -  патент 2412905 (27.02.2011)
способ получения едкого натра -  патент 2366762 (10.09.2009)
способ электролитического получения щелочи -  патент 2366761 (10.09.2009)
способ очистки газов от серосодержащих примесей -  патент 2241525 (10.12.2004)
способ очистки дымовых газов от окислов серы -  патент 2236893 (27.09.2004)
установка для декарбонизации растворов, содержащих гидроксид щелочного металла -  патент 2213611 (10.10.2003)
способ получения моногидрата гидроксида лития высокой степени чистоты из материалов, содержащих карбонат лития -  патент 2196735 (20.01.2003)
способ получения гидроксида лития высокой степени чистоты из природных рассолов -  патент 2157338 (10.10.2000)
электролизер, способ получения раствора основания и раствора, содержащего кислоту, и способ получения раствора основания и раствора чистой кислоты -  патент 2107752 (27.03.1998)
Наверх