отрицательный электрод литий-ионного аккумулятора
Классы МПК: | H01M4/96 угольные электроды H01M10/40 с органическим электролитом |
Автор(ы): | Кулова Т.Л. (RU), Нижниковский Е.А. (RU), Скундин А.М. (RU), Ганшин В.М. (RU), Чебышев А.В. (RU), Фесенко А.В. (RU), Щербаков В.А. (RU), Власов А.А. (RU), Ковальчук А.В. (RU) |
Патентообладатель(и): | Общество с ограниченной ответственностью "Омега-Холдинг" (RU) |
Приоритеты: |
подача заявки:
2004-08-17 публикация патента:
27.08.2005 |
Изобретение относится к химическим источникам тока и касается отрицательного электрода литий-ионного аккумулятора. Согласно изобретению отрицательный электрод литий-ионного аккумулятора содержит токовый коллектор, на поверхности которого закреплен активный слой на основе смеси модифицированного графита и ацетиленовой сажи, взятых в соотношении от 80:20 до 95:5 соответственно. При этом на одном квадратном сантиметре поверхности токового коллектора содержится от 3 до 10 мг модифицированного графита, который имеет форму пленок с толщиной 0,05-0,1 мкм и удельной площадью поверхности от 1500 до 2000 м2/г. Техническим результатом изобретения является снижение необратимой емкости электрода. 6 з.п. ф-лы, 2 ил.
Формула изобретения
1. Отрицательный электрод литий-ионного аккумулятора, содержащий токовый коллектор, на поверхности которого закреплен активный слой на основе углеродного материала, обладающего электронной проводимостью и способностью обратимо внедрять литий, отличающийся тем, что в качестве углеродного материала он содержит смесь модифицированного графита и ацетиленовой сажи, взятых в соотношении 80:20÷95:5 соответственно, при этом частицы модифицированного графита имеют форму пленок с толщиной 0,05-0,1 мкм и удельной площадью поверхности 1500÷2000 м2/г и на одном квадратном сантиметре поверхности токового коллектора содержится 3÷10 мг модифицированного графита.
2. Отрицательный электрод по п.1, отличающийся тем, что модифицированный графит имеет следующий элементарный состав, мас.%:
Углерод | 73-76 |
Кислород | 12-14 |
Анионный остаток кислоты, | |
способной деструктурироваться до | |
газообразных продуктов при | |
температуре 200-250°С | 1,5-2,5 |
Элементы, присутствующие в | |
природном графите | Остальное |
3. Отрицательный электрод по п.1, отличающийся тем, что в качестве токового коллектора он содержит никелевую сетку.
4. Отрицательный электрод по п.1, отличающийся тем, что в качестве токового коллектора он содержит медную сетку.
5. Отрицательный электрод по п.1, отличающийся тем, что активный слой дополнительно включает фторсодержащий полимер.
6. Отрицательный электрод по п.5, отличающийся тем, что в качестве фторсодержащего полимера он содержит поливинилиденфторид.
7. Отрицательный электрод по п.6, отличающийся тем, что активный слой содержит 85 мас.% модифицированного графита, 10 мас.% ацетиленовой сажи и 5 мас.% поливинилиденфторида.
Описание изобретения к патенту
Изобретение относится к химическим источникам тока, а конкретнее касается отрицательного электрода литий-ионного аккумулятора.
Изобретение найдет применение в электронной технике, в основном в мобильных телефонах, портативных компьютерах, а также может быть использовано в химическом машиностроении, электротехнике.
В настоящее время широкое распространение получили литий-ионные аккумуляторы. Для изготовления отрицательных электродов таких аккумуляторов применяют различные углеродные материалы, которые обеспечивают обратимые процессы окисления-восстановления лития, происходящие одновременно с интеркаляцией, то есть внедрением атомов лития в структуру активного слоя отрицательных электродов.
Одной из важных характеристик названных литий-ионных аккумуляторов является необратимая емкость, возникающая вследствие необратимых процессов в основном на отрицательном электроде в ходе первого цикла заряда-разряда и связанная с восстановлением на поверхности его активного слоя компонентов электролита.
Известен отрицательный электрод литий-ионного аккумулятора, содержащий токовый коллектор, на поверхности которого закреплен активный слой, представляющий собой пироуглерод, сформированный на подложке из никеля путем термообработки в среде газообразного углеводорода при температуре не выше 1500°С (патент США 5158578, опубл. 27.10.92).
Испытания 3-электродной ячейки с указанным отрицательным электродом и катодом из металлического лития и электродом сравнения из металлического лития в растворе LiClO4 в пропиленкарбонате показали возможность достижения разрядной емкости до 300 мА·ч/г (углеродного материала). При этом процесс получения такого активного слоя является достаточно сложным и продолжительным по времени, не позволяет образовать на подложке слой пироуглерода большой толщины вследствие разрушения последнего. Невысокое весовое содержание пироуглерода в активном слое обуславливает низкие удельные характеристики (емкость, энергию) аккумулятора в целом.
В качестве прототипа выбран отрицательный электрод литий-ионного аккумулятора, описанный в патенте РФ №2133527, МКИ: Н 01 М 4/96, опубл. 20.07.99. Указанный отрицательный электрод литий-ионного аккумулятора содержит токовый коллектор, на котором прессованием, намазкой или прокаткой закреплен активный слой, обладающий электронной проводимостью и способностью обратимо внедрять литий и представляющий собой дисперсный материал, включающий пироуглерод высокой степени графитизации, частицы никеля размером 0,1-20,0 мкм и, возможно, связующее, например фторсордержащий полимер. Соотношение никель: пироуглерод в активном слое составляет (10-20):(80-90) мас%. Пироуглерод, содержащийся в активном слое, имеет графитоподобную структуру с межплоскостным расстоянием, равным 0,336-0,340 нм, и размером кристаллов графита в направлении, перпендикулярном плоскостям, равным .
Указанный отрицательный электрод литий-ионного аккумулятора обеспечивает достижение высокой емкости - порядка 300 мА·ч/г, стабильные эксплуатационные характеристики при циклировании.
Однако указанный отрицательный электрод с используемым активным слоем обладает существенным недостатком - так называемой необратимой емкостью (Qirr), составляющей около 600 мА·ч/г, т.е. величину, которая заметно превышает его обратимую емкость. Причина появления необратимой емкости заключается в протекании побочных реакций на поверхности отрицательного электрода, выполненного с использованием указанного пироуглерода с графитоподобной структурой. Суть этого явления состоит в том, что в ходе первого цикла заряда-разряда литий-ионного аккумулятора при катодной поляризации отрицательного электрода на его поверхности происходит восстановление компонентов электролита и часть электричества тратится необратимо. В результате протекания этих побочных реакций поверхность отрицательного электрода постепенно покрывается пленкой, состоящей из продуктов восстановления электролита. В состав этих продуктов входят как минеральная составляющая (в основном Li2CO3, частично LiF), так и органическая составляющая (полимеры или олигомеры олефинов, например, полипропилен в электролите на основе пропиленкарбоната, и полиэтилен в электролитах на основе этиленкарбоната). Эта пленка, представляющая собой твердый электролит с проводимостью по ионам лития, впоследствии предотвращает восстановление электролита, затрудняя процесс интеркаляции-деинтеркаляции лития.
При столь высокой необратимой емкости отрицательного электрода требуется дополнительное количество лития в материале положительного электрода, что в свою очередь снижает удельные характеристики литий-ионного аккумулятора.
В основу заявляемого изобретения положена задача путем изменения состава и структуры активного слоя создать отрицательный электрод литий-ионного аккумулятора, обладающий более низкой необратимой емкостью.
Указанная задача решается при создании отрицательного электрода литий-ионного аккумулятора, содержащего токовый коллектор, на поверхности которого закреплен активный слой на основе углеродного материала, обладающего электронной проводимостью и способностью обратимо внедрять литий, который, согласно изобретению, в качестве углеродного материала содержит смесь модифицированного графита и ацетиленовой сажи, взятых в соотношении от 80:20 до 95:5 соответственно, при этом частицы модифицированного графита имеют форму пленок с толщиной 0,05-0,1 мкм и удельной площадью поверхности от 1500 до 2000 м2 /г, и на одном квадратном сантиметре поверхности токового коллектора содержится от 3 до 10 мг модифицированного графита.
Техническим результатом настоящего изобретения является создание отрицательного электрода литий-ионного аккумулятора, имеющего необратимую емкость менее 200 мА·ч/г, благодаря чему не требуется большой избыток материала положительного электрода и, таким образом, повышается удельная емкость литий-ионного аккумулятора в целом.
Согласно изобретению для обеспечения минимальной необратимой емкости отрицательного электрода целесообразно, чтобы модифицированный графит имел следующий элементарный состав, мас.%:
Углерод | 73-76 |
Кислород | 12-14 |
Анионный остаток кислоты, | |
способной деструктурироваться | |
до газообразных продуктов при | |
температуре 200-250 град. С | 1,5-2,5 |
элементы, присутствующие в | |
природном графите | остальное |
Согласно изобретению полезно, чтобы в качестве токового коллектора он содержал никелевую сетку или медную сетку.
Согласно изобретению полезно, чтобы активный слой дополнительно включал фторсодержащий полимер, в том числе поливинилиденфторид, который выполняет функции связующего и способствует более прочному закреплению активного слоя на поверхности токового коллектора.
Согласно изобретению целесообразно, чтобы активный слой содержал 85 мас.% модифицированного графита, 10 мас.% ацетиленовой сажи и 5 мас.% поливинилиденфторида.
Дальнейшие цели и преимущества заявляемого изобретения станут ясны из последующего подробного описания отрицательного электрода литий-ионного аккумулятора и чертежей, на которых:
фиг.1 схематично изображает отрицательный электрод литий-ионного аккумулятора, выполненный согласно изобретению, продольное сечение;
фиг.2 графически изображает емкость отрицательного электрода, аналогичного описанному в патенте РФ №2133527, и емкость отрицательного электрода, согласно изобретению, в течение первого цикла заряда-разряда.
Предлагаемый в настоящем изобретении отрицательный электрод литий-ионного аккумулятора содержит токовый коллектор 1, представляющий собой, например, никелевую, медную сетку, пластину из никелевой, медной фольги; на поверхности токового коллектора 1 закреплен активный слой 2, обладающий электронной проводимостью и способностью обратимо внедрять литий.
Как показали исследования, величина необратимой емкости отрицательного электрода литий-ионного аккумулятора зависит от свойств и структурного строения углеродного материала, то есть, например, наличия или отсутствия трещин, соотношения площадей базальной и фронтальной поверхностей его частиц. Найдено, что достигнуть минимальную необратимую емкость (менее 200 мА·ч/г) отрицательного электрода при первоначальном циклировании возможно при выполнении активного слоя 2 отрицательного электрода из модифицированного графита, взятого в смеси с ацетиленовой сажей. Говоря в данном случае о модифицированном графите, имеют в виду продукт, представляющий собой вспученные частицы слоистого соединения графита с удельным насыпным весом около 0,25 г/см3, которые имеют размер от около 25 до около 50 мк, форму пленок с толщиной 0,05-0,1 мкм и удельной площадью поверхности от 1500 до 2000 м2 /г.
Модифицированный графит с указанными характеристиками в основном имеет следующий элементарный состав, мас.%:
углерод | 73-76 |
кислород | 12-14 |
анионный остаток кислоты, | |
способной деструктурироваться | |
до газообразных продуктов | |
при температуре 200-250 град. С | 1,5-2,5 |
элементы, присутствующие в | |
природном графите | остальное |
Метод получения продукта с такими характеристиками и составом известен и состоит из следующих этапов.
Природный порошкообразный графит, например, типа литейного, тигельного или электролитного угольного обрабатывают кислотным реагентом в две стадии, при этом на первой стадии образуют оксид графита - Сх +(ОН)у - (Н2О) 2, для чего используют преимущественно смесь 70%-ных водных растворов азотной и серной кислот, взятых по объему в соотношении 1:1.
На второй стадии обработки кислотным реагентом на образованный оксид графита воздействуют кислотой, способной деструктурироваться до газообразных продуктов при температуре 200-250 град. С, например хлорноватой, надсерной кислотой. При этом происходит вспучивание образованного соединения графита с достижением объемного коэффициента вспучивания не менее 400 см3/г.
Далее полученное графитовое соединение сушат, а затем термообрабатывают при 200-250 град. С.
Согласно изобретению на одном квадратном сантиметре поверхности токового коллектора 1 заявляемого отрицательного электрода должно содержаться от 3 до 10 мг вышеуказанного модифицированного графита, что обеспечивает удельную емкость электрода от 1 до 3 мАч/см2.
Содержание модифицированного графита и ацетиленовой сажи в активном слое 2 заявляемого отрицательного электрода находится в следующем соотношении: от 80:20 до 95:5 соответственно.
Ацетиленовая сажа играет роль электролитпоглощающей добавки, обеспечивающей равномерное содержание электролита по всему объему отрицательного электрода.
Введение в активный слой ацетиленовой сажи в количестве, меньшем величины 5 указанного соотношения, не обеспечивает достаточного электролитопоглощения электродом, что ухудшает его характеристики при повышенных плотностях тока. Увеличение в активном слое содержания ацетиленовой сажи в количестве, превышающем величину 20 указанного соотношения, не приводит к дальнейшему улучшению распределения электролита по объему электрода, но снижает удельную емкость электрода.
Активный слой 2 заявляемого отрицательного электрода дополнительно может включать связующее, обеспечивающее более прочное закрепление активного слоя 2 на поверхности токового коллектора 1 и создание пористой структуры отрицательного электрода из вышеуказанных дисперсных материалов.
В качестве связующего может быть использован такой фторсодержащий полимер, как, например, поливинилиденфторид.
Согласно изобретению активный слой 2 заявляемого отрицательного электрода может иметь следующий состав: 85 мас.% модифицированного графита, 10 мас.% ацетиленовой сажи и 5 мас.% поливинилиденфторида.
При изготовлении заявляемого отрицательного электрода гомогенизированную в ультразвуковом диспергаторе УЗДН-1 массу, например, следующего состава: 85 мас.% модифицированного графита, 10 мас.% ацетиленовой сажи и 5 мас.% поливинилиденфторида, растворенного в N-метил-2-пирролидоне, формуют известными приемами - прессованием, прокаткой, намазкой - на токовом коллекторе 1, например на никелевой сетке.
Изготовленные электроды хранят до сборки аккумуляторов в боксе с атмосферой аргона или диоксида углерода.
Испытания отрицательных электродов, согласно изобретению, проводят во фторопластовых макетах элементов плоскопараллельной конструкции.
Макеты элементов плоскопараллельной конструкции собирают и заполняют электролитом в перчаточном боксе с атмосферой аргона или диоксида углерода. В качестве электролитов используют 1 М раствор LiC1О 4 в смеси пропилен карбонат - диметоксиэтан при объемном соотношении 7:3 соответственно (отечественный электролит предприятия "Литий-элемент") и 1 М растворе LiPF6 в смеси пропилен карбонат - диэтилкарбонат при объемном соотношении 1:4 соответственно (электролит LP-20, фирма Merck). Содержание воды в этих электролитах, измеренное по Фишеру (K.F. Titration, KF 562 Metrohm), составляет 50 ppm.
Заряд осуществляют током 0,3 мА/см2 до потенциала +0,0 В по литию. Разряд осуществляют током 0,3 мА/см2 до потенциала +1,2 В.
Средняя удельная емкость анода в течение 200 циклов заряд-разряд составляет 300 мА·ч/г модифицированного графита и ацетиленовой сажи.
Средний потенциал при разряде составляет 0,07 В по отношению к литию.
В результате проведенного эксперимента получены значения необратимой емкости (Qirr), т.е. количества электричества, затрачиваемого на формирование пассивной пленки (плотность тока 20 мА/г, электролит LP-20). На основании проведенного эксперимента построены зарядно-разрядная кривая 1' (фиг.2) первого цикла для отрицательного электрода, аналогичного описанному в патенте РФ №2133527, и зарядно-разрядная кривая 2' первого цикла для отрицательного электрода, согласно изобретению. Как видно на фиг.2, значения обратимой емкости для обоих электродов практически совпадают, при этом необратимая емкость ( ) отрицательного электрода по патенту РФ №2133527 почти в три раза выше, чем необратимая емкость ( ) отрицательного электрода по настоящему изобретению.
При создании литий-ионного аккумулятора важным является вопрос о работе отрицательного электрода при повышенных плотностях тока в расчете на массу его активного слоя. Связано это с тем, что удельная обратимая емкость отрицательных электродов выше удельной обратимой емкости положительных электродов в 2-2.5 раза. Для сбалансированной работы обоих электродов масса положительного электрода должна быть больше массы отрицательного как минимум в 2-2.5 раза. Кроме того, необходим некоторый избыток материала положительного электрода для компенсации необратимой емкости отрицательного электрода. Все это приведет к тому, что плотность тока на единицу массы активного слоя будет больше плотности тока на единицу массы положительного электрода в 3-4 раза.
При исследовании циклирования отрицательных электродов, согласно изобретению, в форсированном режиме были выбраны следующие плотности тока: 20, 50, 100 и 200 мА/г графита. Оказалось, что даже при плотности тока 200 мА/г удельная емкость электрода составляет 150 мАч/г, что вполне приемлемо для практических целей.
Полученные результаты свидетельствуют о том, что заявляемый отрицательный электрод для литий-ионного аккумулятора благодаря его необратимой емкости в среднем около 200 мАч/г не вызывает необходимости в большом избытке материала положительного электрода, что, таким образом, повышает удельную емкость литий-ионного аккумулятора в целом. Кроме того, заявляемый отрицательный электрод для литий-ионного аккумулятора надежен в эксплуатации и стабилен при циклировании.
Заявляемый отрицательный электрод для литий-ионного аккумулятора обладает преимуществами экономического характера; пригоден для изготовления в широком диапазоне форм и размеров, что способствует расширению областей применения литий-ионных аккумуляторов.
Класс H01M4/96 угольные электроды
Класс H01M10/40 с органическим электролитом