способ переработки высокомолекулярных остатков нефтепереработки

Классы МПК:C10C3/02 химическими средствами 
Автор(ы):, , , , , ,
Патентообладатель(и):Государственное унитарное предприятие "Институт нефтехимпереработки Республики Башкортостан" (ГУП "ИНХП РБ") (RU),
ГОУ ВПО Уфимский государственный институт сервиса (УГИС) (RU)
Приоритеты:
подача заявки:
2004-06-01
публикация патента:

Изобретение относится к нефтехимии и технологии полимеров и может быть использовано при переработке гудронов. Сущность: проводят смешение гудрона с технической серной кислотой с последующим нагревом до 130-180°С в течение 120-150 мин. Технический результат - получение модификатора первичного полиэтилена и полипропилена. Способ позволяет расширить область применения продукта переработки высокомолекулярных остатков нефтепереработки. 1 з.п. ф-лы, 4 табл.

Формула изобретения

1. Способ переработки высокомолекулярных остатков нефтепереработки путем их смешения с технической серной кислотой при нагревании в течение определенного времени, отличающийся тем, что в качестве высокомолекулярного остатка нефтепереработки используют гудрон, при этом нагрев проводят при 130-180°С при следующем соотношении компонентов, мас.%:

Гудрон90-98,5
Техническая серная кислота1,5-10

2. Способ по п.1, отличающийся тем, что нагрев вышеупомянутых компонентов проводят в течение 120-150 мин.

Описание изобретения к патенту

Изобретение относится к нефтехимии и технологии полимеров, в частности к способам переработки высокомолекулярных остатков нефтепереработки, а именно: гудронов.

Высокомолекулярные остатки нефтепереработки находят применение в качестве сырья для битуминозных материалов, использующихся в строительстве для дорожных покрытий. Однако для более квалифицированного использования требуется их химическая переработка. Так, известен способ переработки асфальта деасфальтизации гудрона пропаном, предусматривающий смешение его с технической серной кислотой и кубовыми остатками производства изопрена, получаемыми при производстве изопрена формальдегидным способом на стадии ректификации возвратного диметилдиоксана, в течение 30-90 минут при нагревании до 90-110°С (А.С. 1696454, МПК5 С 10 С 3/02, оп. 07.12.91). Продукт переработки АСМОЛ обладает свойствами полупроводника. Но получение АСМОЛА связано с использованием токсичных смол от производства синтетического каучука.

Наиболее близким по существенным признакам является способ переработки высокомолекулярных остатков нефтепереработки, предусматривающий смешение нефтяных асфальтенов с технической серной кислотой и кубовыми остатками стадии ректификации возвратного диметилдиоксана процесса получения изопрена разложением диметилдиоксана при 180-200°С в течение 120-180 минут (пат. РФ 2064959, МПК6 С 10 С 3/02, оп. 10.08.96). Продукт переработки - асфальтенол является теплоэлектроизолятором и модификатором вторичного полиэтилена (пленки).

Однако неизвестно применение асфальтенола в качестве модификатора первичного полиэтилена и полипропилена. Кроме того, в известном способе используется токсичное вещество - диметилдиоксан.

Таким образом, возникла задача расширить область применения продукта переработки высокомолекулярных остатков нефтепереработки, а также исключить использование токсичных веществ.

Технический результат - получение модификатора первичного полиэтилена и полипропилена при переработке высокомолекулярных остатков нефтепереработки.

Указанный технический результат достигается тем, что в известном способе переработки высокомолекулярных остатков нефтепереработки путем их смешения с технической серной кислотой при нагревании в течение определенного времени, согласно изобретению, в качестве высокомолекулярного остатка нефтепереработки используют гудрон, при этом нагрев проводят при 130-180°С при следующем соотношении компонентов, мас.%.:

гудрон90-98,5
техническая серная кислота1,5-10

Целесообразно нагрев проводить в течение 120-150 мин.

Полученный сульфопродукт (СП) представляет собой полифункциональное катионообменное вещество, содержащее сульфо-, сульфоно-, сульфидные, карбоксильные и фенольные группы. Вследствие повышенного содержания свободных радикалов и полярных групп, указанный сульфопродукт обладает высокой термоокислительной стабильностью и адгезией к полиолефинам и может быть использован как модификатор первичного полиэтилена (ПЭ) и полипропилена (ПП).

Сравнение предлагаемого способа с прототипом показало наличие новых условий осуществления указанных действий: нового сырья - гудрона и новых температур нагрева смеси гудрона с серной кислотой, поэтому можно сделать вывод о соответствии предлагаемого способа критерию "новизна".

Поиск по отличительным признакам выявил способ получения катионитов (А.С. 400614, МПК С 10 С 3/02, оп. 01.10.73), в котором кислые гудроны обрабатывают серной кислотой при 160-180°С в течение 15-30 мин с получением (как и в предлагаемом способе) катионообменного вещества - сульфопродукта.

Однако, как показали исследования, при увеличении длительности взаимодействия гудрона с кислотой (в десятки раз), кроме реакции сульфирования гудрона, которая идет в течение первых 10-30 мин, начинается процесс конденсации сульфидных производных с образованием сульфонов и деструктивное окисление боковых алкильных заместителей и нафтеновых фрагментов с образованием карбоксильных и фенольных групп, которые придают продукту новые свойства, в частности увеличение концентрации парамагнитных центров (ПМЦ) до 1,5·1019 спин/г, свидетельствующее о наличии свободных радикалов и полярных групп и позволяющее использовать его по новому назначению - в качестве модификатора полимеров.

Таким образом, предлагаемый способ по сравнению с вышеуказанным позволяет достигнуть нового технического результата и соответствует критерию "изобретательский уровень".

Предлагаемый способ осуществляют следующим образом. Гудрон с установки АВТ с Ткип>400°С (состав и свойства приведены в табл.1) смешивают с технической серной кислотой, нагревают и загружают в реактор - мешалку, где выдерживают в течение времени, необходимого для образования сульфопродукта. Полученный продукт охлаждают до 80-100°С и выгружают в тару.

Таблица 1
Состав и свойства гудрона
Наименование показателя Величина показателя
Относительная плотность1,05
Среднечисловая молекулярная масса, моль -1658
Растворимость в бензоле, %100
Температура начала разложения, °С 280
Коксуемость по Конрадсону, % масс.35
Концентрация парамагнитных центров, спин/г 1,5·1017
Групповой углеводородный состав, % масс.:
- парафино-нафтеновые 10,2
- ароматические, в т.ч.: 51,1
моноциклические 9,0
бициклические 6,5
полициклические 35,6
- смолы 23,0
- асфальтены 15,7

Конкретные примеры выполнения способа, характеризующие условия проведения процесса, и некоторые свойства продуктов приведены в таблице 2.

Как видно из табл.2, увеличение концентрации серной кислоты выше верхнего заявленного предела приводит к получению неоднородной зернистой массы с включением жидкости. Недостаток серной кислоты, так же, как и недостаток гудрона, приводит к получению полутвердого продукта, т.к. серная кислота является не только сульфирующим агентом, но и катализатором процесса конденсации непредельных и ароматических соединений в составе смол и асфальтенов.

Нагрев свыше 200°С приводит к термодеструкции сырья и продуктов. Снижение температуры <130°С и сокращение времени процесса <120 минут приводит к получению полутвердой неоднородной массы.

Полученный сульфопродукт - модификатор (М) представляет собой хрупкое вещество черно-коричневого цвета, обладает высокими теплоизоляционными, электроизоляционными и адгезионными свойствами.

В таблице 3 приведены физико-химические свойства полученного модификатора сравнительно с известным - прототипом.

способ переработки высокомолекулярных остатков нефтепереработки, патент № 2261892

Таблица 3
Физико-химические свойства модификаторов
Наименование показателяЗначение показателя
Модификатор по прототипу Предлагаемый модификатор
Среднечисловая молекулярная масса, моль-1 1300-1500848-1000
Температура размягчения по КиШ, °С150-18068-95
Коксуемость по Конрадсону, % масс. 65-7219-32
Электропроводность, Ом-1 способ переработки высокомолекулярных остатков нефтепереработки, патент № 2261892см -11,5·10 -11-1,1·10-11 1,5·10-10-2·10 -10
Цвет Коричнево-черныйОт светло-коричневого до шоколадно-черного
Растворимость в водене растворимне растворим
Растворимость в бензоле хорошо растворимхорошо растворим
Растворимость в циклогексаноле ограничено растворим ограничено растворим
Концентрация (ПМЦ), спин/г˜1,5·10 18˜1,5·10 19
Энергия активации вязкого течения (Ek), мДж/моль -30-45

Из табл.3 видно, что продукт переработки гудронов предлагаемым способом по сравнению с прототипом имеет высокую концентрацию ПМЦ, относительно невысокую молекулярную массу и относительно невысокие показатели температуры размягчения и коксуемости, что облегчает процесс его дальнейшего использования. Экспериментально установлено, что он является модификатором первичного полипропилена: улучшает показатели прочности при растяжении и относительном удлинении, стабилизирует полимер в определенных концентрациях и так же, как прототип, проявляет свойства теплоэлектроизолятора. Кроме того, полученный модификатор имеет характерную окраску от светло-коричневого до черного оттенка, причем наличие более широкой цветовой гаммы модификатора позволяет использовать последний еще и как пигмент для крашения полиолефинов в массе. В таблице 4 представлены характеристики ПЭ и ПП, стабилизированных модификатором, полученным предлагаемым способом.

Таблица 4
Результаты испытаний опытных партий полипропилена (образцы 2, 3) и полиэтилена (образцы 5, 6, 7) с различной дозировкой предложенного модификатора и аналогичных товарных полиолефинов, применяемых в кабельной промышленности (образцы 1, 4)
Наименование показателейОбразцы
12 345 67
Показатель текучести расплава, г/10 мин2,4-4,0 3,53,7 2,0-2,22,12,0 2,0
Предел текучести при растяжении, МПаНе менее 28 3229Не менее 95 99105 105
Стойкость к термоокислительному старению при 150°С, часНе менее 360 500500 Не менее 888 8
Относительное удлинение при разрыве, %Не менее 600 628635 Не менее 550673679 679
Стойкость к фотоокислительному старению, часНе менее 500500500 Не менее 500500500 500
Стойкость к растрескиванию, часНе менее 250 250250Не менее 2.5 2,52,5 2,5
Тангенс угла диэлектрических потерь при частоте 106 Гц, 10 -4Не более 5,0 4,24,5Не более 3,0 2,72,6 2,6
Диэлектрическая проницаемость при частоте 1 МГц, кВ/ммНе более 2,30 2,252,27 Не более 2,302,27 2,262,26
Электрическая проницаемость (толщина образца 1 мм) при переменном напряжении 50 Гц, кВ/ммНе менее 40 4743Не менее 40 4241 41
Плотность, г/см 30,9111±0,0015 0,90970,90960,9185±0,0015 0,91750,9175 0,9175
Удельное объемное электрическое сопротивление при 20°С, 10 14 Омспособ переработки высокомолекулярных остатков нефтепереработки, патент № 2261892см Не менее 1100 100Не менее 1 100100100

Образец 1 - товарный полипропилен марки 02003 С-311К по ТУ-2243-059-05766563-98; образец 2 - модифицированный полипропилен с соотношением компонентов ПП:М=99:1; образец 3 - модифицированный полипропилен с соотношением компонентов ПП:М=98:2; образец 4 - товарный полиэтилен марки 10703-20 по ГОСТ 16337-77; образец 5 - модифицированный полиэтилен с соотношением компонентов ПЭ:М=99,5:0,5; образец 6 - модифицированный полиэтилен с соотношением компонентов ПЭ:М=99:1; образец 7 - модифицированный полиэтилен с соотношением компонентов ПЭ:М=98:2.

Данные таблиц показывают, что стабилизированные вышеуказанным модификатором полиэтилен и полипропилен соответствуют стандартам и не уступают по своему качеству аналогичным стабилизированным полимерам, применяемым в настоящее время в промышленности.

Таким образом, предлагаемый способ, осуществляемый без использования токсичных веществ, позволяет получить продукт переработки нефтяных остатков, который может найти широкое применение в области стабилизации полимеров в качестве модификатора, способного заменить дорогостоящие и дефицитные полимерные модификаторы, закупаемые за рубежом, а также как пигмент для крашения полиолефинов в массе.

Класс C10C3/02 химическими средствами 

пластификатор для битума -  патент 2510409 (27.03.2014)
поглотители сероводорода и способы удаления сероводорода из асфальта -  патент 2489456 (10.08.2013)
способ получения анизотропного волокнообразующего нефтяного пека экстракцией ароматическими и гетероциклическими соединениями -  патент 2480509 (27.04.2013)
способ получения асмола -  патент 2443751 (27.02.2012)
способ получения вяжущего -  патент 2415172 (27.03.2011)
способ получения противокоррозионной мастики на основе асфальтосмолистых олигомеров -  патент 2407773 (27.12.2010)
комбинированный способ получения судовых топлив и дорожных битумов (варианты) -  патент 2312129 (10.12.2007)
способ солюбилизации асфальтенов в углеводородной смеси и смесь для осуществления способа -  патент 2280672 (27.07.2006)
вяжущее на основе прудового кислого гудрона и способ его получения -  патент 2233856 (10.08.2004)
способ получения вяжущего для строительной индустрии -  патент 2223300 (10.02.2004)
Наверх