радиопрозрачный материал для антенного обтекателя
Классы МПК: | C04B35/04 на основе оксида магния C04B35/00 Формованные керамические изделия, характеризуемые их составом; керамические составы; обработка порошков неорганических соединений перед производством керамических изделий |
Автор(ы): | Каблов Е.Н. (RU), Щетанов Б.В. (RU), Берсенев А.Ю. (RU), Максимов В.Г. (RU) |
Патентообладатель(и): | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") (RU) |
Приоритеты: |
подача заявки:
2003-12-30 публикация патента:
27.10.2005 |
Изобретение относится к области композиционных материалов, а именно монолитных, прозрачных для микроволнового излучения обтекателей антенн и радиолокаторов летательных аппаратов, обладающих высокой прочностью и эрозионной стойкостью при температурах свыше 2000°С. Технический результат изобретения - разработка материала, обладающего высокой прочностью, высокой эрозионной стойкостью и радиопрозрачностью как при низких, так и при высоких температурах, не требующего при изготовлении дорогостоящего оборудования и дефицитного сырья и легко поддающегося механической обработке. Для решения поставленной задачи предложен радиопрозрачный материал для антенного обтекателя, содержащий керамическую матрицу из оксида магния и мелкодисперсные включения нитрида бора. Содержание нитрида бора составляет 15-45 об.%. При температуре 2300 оС материал обладает плотностью 3,1-3,4 г/см3 и имеет диэлектрическую постоянную 7-9. 1 табл.
Формула изобретения
Радиопрозрачный материал для антенного обтекателя, содержащий керамическую матрицу и мелкодисперсные включения нитрида бора, отличающийся тем, что керамическая матрица выполнена из оксида магния, а содержание нитрида бора составляет 15-45 об.%, при этом плотность материала при температуре 2300оС составляет 3,1-3,4 г/см3, а диэлектрическая постоянная - 7-9.
Описание изобретения к патенту
Изобретение относится к области композиционных материалов, а именно монолитных, прозрачных для микроволнового излучения обтекателей антенн и радиолокаторов летательных аппаратов, обладающих высокой прочностью и эрозионной стойкостью при температурах свыше 2000°С.
Возрастающие скорости летательных аппаратов, повышение их маневренности и дальности поражения целей, возможность их применения в любую погоду, повышение требований к радиотехническим характеристикам обусловили потребность в радиопрозрачных обтекателях антенн летательных аппаратов, обладающих рядом свойств, таких как устойчивость к аэродинамическим нагрузкам, эрозионная стойкость, проницаемость для радиоволн при высоких температурах (2000°С). Поэтому необходимы материалы для изготовления таких обтекателей, обладающие высокой прочностью, высокой эрозионной стойкостью, радиопрозрачностью и отсутствием абляции при высоких температурах, т.е. уноса массы с поверхности обтекателя высокотемпературным скоростным газовым потоком под воздействием тепла, механических сил и агрессивных сред этого потока.
Существует большое количество высокотермостойких материалов, устойчивых в окислительных и восстановительных средах, со стабильными диэлектрическими характеристиками и при низких, и при высоких температурах, на основе кварцевой керамики и стеклокерамических материалов, таких как ситаллы. Технология получения таких материалов не требует дорогостоящего оборудования и сырья, в основном это получение изделий из жидких шликеров и прессование порошковых масс, однако эти материалы имеют существенный недостаток - низкие прочностные свойства, что не позволяет использовать их в изделиях, несущих высокие нагрузки.
Известен радиопрозрачный композиционный материал на основе алюминиево-кремниевого оксинитрида, упрочненного нитридом бора, равномерно распределенного в виде дискретной фазы в алюминиево-кремниевой оксинитридной матрице. Композит получают путем приготовления однородной смеси порошков нитрида бора, нитрида алюминия, оксида кремния и оксида алюминия, компактирования этой смеси при повышенных температуре и давлении в течение времени, достаточного для образования матричной кремниево-алюминиево-оксинитридной структуры с распределенным внутри нее мелкодисперсным нитридом бора (патент США №5891815).
Известен также радиопрозрачный материал, работоспособный при 2000°С, получаемый путем приготовления порошковой смеси из 20-60 мас.% Si3N4, 12-40%BN, 15-40% SiO2 и 1-20% кислородсодержащих спекающих добавок, формования предварительной заготовки из этой смеси и горячего прессования ее в монолитный материал (патент США №5627542).
Также известен композиционный материал для радиопрозрачного обтекателя, состоящий из нитрида алюминия и распределенного в нем нитрида бора в количестве 0,01-35 об.%, получаемый путем смешивания порошков нитрида алюминия размером не более 74 мкм и нитрида бора размером не более 10 мкм, помещения порошка в форму и уплотнения его в неокисляющей среде при температуре, давлении и в течение времени, достаточных для образования керамической структуры (патент США №4666873).
Недостаток этих материалов заключается в том, что образующиеся на их поверхности при температурах эксплуатации защитные пленки оксида кремния и оксида алюминия при температуре свыше 1750°С разрушаются, и материал становится подвержен абляции и эрозии, что существенно снижает срок службы антенных обтекателей, выполненных из этих материалов.
Наиболее близким по составу к заявляемому является радиопрозрачный материал для обтекателей антенн, включающий дискретную фазу нитрида бора, распределенную в матрице из оксида алюминия. Частицы нитрида бора в среднем имеют длину 3-5 мкм и имеют форму чешуек, толщина которых в 10 раз меньше длины (патент США №4304870).
Недостаток этого материала, принятого за прототип, заключается в том, что температура 2000°С является для него физическим пределом из-за плавления оксида алюминия, что делает невозможным его применение в гиперзвуковых летательных аппаратах, где температуры эксплуатации составляют 2000°С и выше, а кроме того, технология получения и эксплуатация этого материала требуют предотвращения попадания на его поверхность щелочных и щелочноземельных ионов из-за склонности оксида алюминия к образованию высокоэлектропроводного и нетермостойкого -глинозема, из-за чего материал становится подвержен эрозии. Эти недостатки ограничивают его применение в изделиях, работающих при температурах свыше 2000°С и гиперзвуковых скоростях.
Технической задачей данного изобретения является разработка материала для антенного обтекателя летательного аппарата, работоспособного при температурах свыше 2000°С, обладающего высокой прочностью, высокой эрозионной стойкостью и радиопрозрачностью как при низких, так и при высоких температурах, не требующего при изготовлении дорогостоящего оборудования и дефицитного сырья и легко поддающегося механической обработке.
Для решения поставленной задачи предложен радиопрозрачный материал для антенного обтекателя, содержащий керамическую матрицу и мелкодисперсные включения нитрида бора, отличающийся тем, что керамическая матрица содержит оксид магния, а содержание нитрида бора составляет 15-45 об.%.
Готовое изделие характеризуется монолитной структурой из оксида магния с мелкодисперсными включениями нитрида бора, имеет плотность 3,1-3,4 г/см3 в зависимости от содержания нитрида бора, диэлектрическую постоянную 7,5, тангенс потерь сухого образца 0,0006 (6×10-4), а после воздействия влаги в течение суток и сушки - 0,005, прочность 100 МПа, незначительную абляцию при 2500°С и хорошую способность к механической обработке.
Примеры осуществления.
Пример №1.
Для приготовления шликера брали 80 г оксида магния, 10 г размолотого до размера частиц 1-5 мкм нитрида бора и 30 мл дистиллированной воды. После затвердевания шликера полученную заготовку раздробили, подвергли обжигу при 1250°С и размололи. Полученный порошок засыпали в графитовую форму и подвергли горячему прессованию при температуре 1750°С и давлении 25 МПа. Содержание оксида магния в полученном материале составило 85 об.%, а нитрида бора - 15 об.%. В таблице приведены химический состав и свойства предлагаемого материала (примеры 1-3) и материала по прототипу (пример 4).
Пример №2.
По примеру №1 получен материал с содержанием оксида магния 66 об.% и нитрида бора 34 об.%. Исходное количество оксида магния - 67 г, а частиц нитрида бора размером 7-10 мкм - 24 г.
Пример №3.
По примеру №1 получен материал с содержанием оксида магния 55 об.% и нитрида бора 45 об.%. Было взято 57 г оксида магния и 34 г порошка нитрида бора.
Пример №4 по материалу-прототипу.
Получен горячепрессованный образец из 154 г Al2О3 и 46 г BN. Механическое смешение проходило в шаровой мельнице в течение 2 часов в среде изопропилового спирта с последующей сушкой. Температура горячего прессования полученной смеси составляла 1750°С, давление - 25 МПа. Содержание в готовом материале оксида алюминия составляло 65 об.%, а нитрида бора - 35 об.%. Свойства полученного материала приведены в таблице.
Таблица | |||||||
№примера | Состав материала | Свойства полученных образцов | |||||
Прочность, МПа | Абляция* | Тангенс потерь | Плотность, г/см3 | Диэлектрическая постоянная | Рабочая температура, °С | ||
1 | MgO-85%, BN-15% | 120 | отсутствует | 6·10-4 | 3,49 | 9 | 2300 |
2 | MgO-66%, BN-34% | 110 | отсутствует | 4·10-4 | 3,24 | 7,5 | 2300 |
3 | MgO-55%, BN-45% | 100 | Появление небольшого матового пятна на рабочей поверхности | 4·10-4 | 3,09 | 7 | 2300 |
4 | Al2O 3-65% BN-35% | 110 | Значительный размыв поверхности со следами растекания расплава | 4·10-4 | 3,56 | 7,6 | 1950 |
* - В графе «абляция» описано изменение поверхности материала под воздействием потока продуктов сгорания природного газа с коэффициентом избытка воздуха 1,1-1,2 при температуре 1200°С, скорости потока 1000 м/с и статическом давлении 0,1 МПа. |
Как видно из таблицы, предлагаемый радиопрозрачный материал имеет хорошую устойчивость к абляции при температурах выше 2000°С, высокую прочность, достаточно низкую плотность и хорошую радиопрозрачность, характеризуемую диэлектрической постоянной и тангенсом потерь. Материал прототипа с матрицей на основе оксида алюминия обладает примерно такой же прочностью и радиопрозрачностью, но имеет более высокую плотность, а следовательно, утяжелит изделие и деструктирует при более низкой температуре (1950°С) из-за плавления оксида алюминия.
Таким образом, применение предлагаемого радиопрозрачного материала для изготовления антенных обтекателей позволит повысить надежность и ресурс изделий нового поколения, в том числе гиперзвуковых летательных аппаратов.
Класс C04B35/04 на основе оксида магния
Класс C04B35/00 Формованные керамические изделия, характеризуемые их составом; керамические составы; обработка порошков неорганических соединений перед производством керамических изделий