способ получения от мягких до полужестких полиуретановых интегральных пенопластов
Классы МПК: | C08J9/34 химические способы изготовления изделий, состоящих из сердцевины, сделанной из вспененного высокомолекулярного вещества, и поверхностного слоя из высокомолекулярного вещества с более высокой плотностью, чем у сердцевины C08J9/14 органическим C08L75/04 полиуретаны C08G18/65 низкомолекулярные соединения, содержащие активный атом водорода в комбинации с высокомолекулярными соединениями, содержащими активный атом водорода |
Автор(ы): | АЙЗЕН Норберт (DE), ЗАЙДЛИТЦ Даниэль (DE) |
Патентообладатель(и): | БАЙЕР АКЦИЕНГЕЗЕЛЬШАФТ (DE) |
Приоритеты: |
подача заявки:
2000-12-04 публикация патента:
10.11.2005 |
Изобретение относится к вспененным полиуретановым формованным изделиям с уплотненной краевой зоной с заданной жесткостью и отчетливо выраженной более мягкой ячеистой сердцевиной. Описывается способ получения от мягких до полужестких полиуретановых интегральных пенопластов взаимодействием а) органических и/или модифицированных органических полиизоцианатов или их форполимеров с б) по меньшей мере одним полиольным компонентом с гидроксильным числом от 20 до 200 и функциональностью от 2 до 6, при необходимости в комбинации с в) полиольным компонентом с гидроксильным числом от 201 до 899 и функциональностью от 2 до 3, а также г) по меньшей мере одним компонентом, являющимся удлинителем цепи, с гидроксильным числом или аминным числом от 600 до 1850 и функциональностью от 2 до 4 в количестве от 3 до 20 мас.% относительно суммы количеств компонентов б) и в), и д) при необходимости, с известными добавками, активаторами и/или стабилизаторами, в присутствии 0,05-0,6 мас.% воды (относительно суммы компонентов б) и в)) и смесей порообразователей, содержащих 1,1,1,3,3-пентафторбутан и хотя бы один другой фторалкан в количестве 0,2-10 мас.% относительно суммы количеств компонентов б)-д). Полученные таким способом пенопласты с интегральной структурой имеют твердость по Шору А краевой зоны от 30 до 90, жесткость при деформации сжатия от 30 до 350 кПа и кажущуюся плотность от 150 до 900 кг/м3. 6 з.п. ф-лы, 1 табл.
Формула изобретения
1. Способ получения от мягких до полужестких полиуретановых изделий с уплотненной краевой зоной и мягкой ячеистой сердцевиной, в котором подвергают взаимодействию
а) органические и/или модифицированные органические полиизоцианаты и/или форполимеры полиизоцианатов с,
б) по меньшей мере, одним полиольным компонентом с гидроксильным числом от 20 до 200 и функциональностью от 2 до 6,
в) при необходимости в комбинации с полиольным компонентом с гидроксильным числом от 201 до 899 и функциональностью от 2 до 3, а также,
г) по меньшей мере, с одним компонентом, являющимся удлинителем цепи, с гидроксильным числом или аминным числом от 600 до 1850 и функциональностью от 2 до 4 в количестве от 3-20 мас.% относительно суммы количеств компонентов б) и в) и
д) при необходимости с известными добавками, активаторами и/или стабилизаторами
в присутствии воды в количестве от 0,05-0,6 мас.% относительно суммы количеств компонентов б) и в) и смесей порообразователей, содержащих 1,1,1,3,3-пентафторбутан и, по меньшей мере, один другой фторалкан, в количестве от 0,2-10 мас.% относительно суммы количеств компонентов б)-д).
2. Способ по п.1, в котором смесь порообразователей содержит 1,1,1,2-тетра-фторэтан.
3. Способ по п.2, в котором содержание 1,1,1,2-тетрафторэтана в смеси порообразователей составляет от 5 до 10-мол.%.
4. Способ по п.1, в котором смесь порообразователей содержит 1,1,1,3,3-пентафторпропан.
5. Способ по п.4, в котором содержание 1,1,1,3,3-пентафторпропана в смеси порообразователей составляет от 5 до 60-мол.%.
6. Способ по одному из пп.1-5, в котором в качестве компонента г) используют гликоли.
7. Способ по одному из пп.1-6, в котором в качестве компонента г) используют изомеры диэтилтолуилендиамина.
Описание изобретения к патенту
Объектом изобретения является способ получения от мягких до полужестких полиуретановых формованных изделий с уплотненной краевой зоной с заданной жесткостью и отчетливо выраженной более мягкой ячеистой сердцевиной, так называемых интегральных пенопластов, в котором в качестве физического порообразователя использованы не горючие смеси фторалканов, содержащие 1,1,1,3,3-пентафторбутан (R 365mfc).
До того как были установлены озоноразрушающие свойства монофтортрихлорметана (R 11), почти исключительно его использовали в качестве порообразователя для создания уплотненной краевой зоны с ячеистой внутренней структурой от мягких до полужестких полиуретановых формованных изделий. После того как озоноразрушающие свойства хлорированных углеводородов стали известными, было много попыток использовать другие виды порообразователей для получения ячеистых полиуретанов.
Так, в европейской заявке на патент ЕР-А 364854 описывается способ получения формованных изделий с уплотненной краевой зоной и ячеистой сердцевиной, преимущественно обувной подошвы, из известных исходных веществ, но с использованием низкокипящих алифатических и/или циклоалифатических углеводородов с 4-8 атомами углерода в молекуле. Недостатком этого газообразного порообразователя является, однако, его горючесть.
Из европейской заявки на патент ЕР-А 381986 известно использование фторалканов с 3-5 атомами углерода в качестве порообразователя при получении полиуретановых пенопластов. В патенте США US-A 5906999 описано получение гибких интегральных пенопластов при использовании 1,1,1,3,3-пентафторпропана (R 245fa). Однако указывается, что при получении интегральных пенопластов с этими порообразователями получают пены с неудовлетворительной интегральной структурой.
Задачей изобретения является развитие способа получения гибких интегральных пенопластов с явно выраженной интегральной структурой, которая равноценна структуре продуктов, вспененных с использованием фторохлороуглеводородов (FCKW) или гелогенированных фторохлороуглеводородов (HFCKW).
Было обнаружено, что при использовании определенных смесей фторуглеводородов в качестве порообразователя могут быть получены интегральные пенопласты, равноценные в отношении жесткости при сжатии и поверхностной жесткости системам, вспененным посредством R 11 или R 141b, а также углеводородным вспенивающим системам. К тому же эти смеси не горючи, что означает большое преимущество при манипулировании ими и при переработке.
Поэтому объектом настоящего изобретения является способ получения от мягких до полужестких полиуретановых формованных изделий с уплотненной краевой зоной и мягкой ячеистой сердцевиной, в котором подвергают взаимодействию
а) органический и/или модифицированный органический полиизоцианат и/или форполимер полиизоцианата
б) с, по меньшей мере, одним полиольным компонентом с гидроксильным числом (ОН-числом) от 20 до 200 и функциональностью от 2 до 6 предпочтительно от 2 до 3,
в) при необходимости, в комбинации с полиольным компонентом с гидроксильным числом (ОН-числом) от 201 до 899 и функциональностью от 2 до 3, а также с
г) по меньшей мере, одним компонентом, являющимся удлинителем цепи, с гидроксильным или аминным числом от 600 до 1850 и функциональностью от 2 до 4 и
д) при необходимости, с известными добавками, активаторами и/или стабилизаторами
в присутствии воды и смесей порообразователей, содержащих 1,1,1,3,3-пентафторбутан и, по меньшей мере, один другой фторалкан.
Предпочтительно используют 1,1,1,3,3-пентафторбутан (R 365mfc) в смеси с 1,1,1,2-тетрафторэтаном (R 134а) или 1,1,1,3,3-пентафторпропаном (R 245fa). Для способа по изобретению предпочтительно используют не горючие порообразователи. Особенно предпочтительны, например, смеси из 90-95% мол. R 365mfc с 5-10% мол. R 134а. В другом наиболее предпочтительном варианте способа по изобретению используют смеси из 40-95% мол., предпочтительно из 40-60% мол. и особенно из 45-55% мол. R 365mfc с 5-60% мол., предпочтительно с 40-60% мол. и особенно с 45-55% мол. R 245fa.
Как ранее упоминалось, в способе по изобретению в качестве порообразователя дополнительно используют еще и воду. Количество воды, дополнительно вводимой в полиуретановые композиции, составляет обычно от 0,05 до 0,6 массовых частей, преимущественно от 0,1 до 0,4 массовых частей на 100 массовых частей компонента б) и в) (полиольных компонентов). Количество смесей фторуглеводородов составляет от 0,2 до 10 массовых частей, предпочтительно от 0,5 до 8 массовых частей на 100 массовых частей компонентов б), в), г) и д), либо б) и г), либо б), в) и г), или б), г) и д) в зависимости от конкретного состава полученного продукта взаимодействия.
Что касается органических полиизоцианатов а), то речь идет об известных алифатических, циклоалифатических, аралифатических и преимущественно ароматических многоатомных изоцианатов, таких как, например, названы в европейской заявке на патент ЕР-А 364854. Особенно пригодны толуилендиизоцианаты и дифенилметандиизоцианаты, продукты их модификации или соответствующие их форполимеры, которые могут быть модифицированы уретановыми группами, группами мочевины, биуретана, аллофаната, карбодиимида или уретдиона. В качестве ароматических полиизоцианатов предпочтительно можно назвать: 4,4-дифенилметандиизоцианат, смеси из 2,4'- и/или 4,4'-дифенилметандиизоцианата или сырые 4,4'-метилен-бис(фенилизоцианаты) и/или 2,4- и/или 2,6-толуилен-диизоцианат, а также их смеси друг с другом.
В качестве полиольного компонента б) пригодны полиольные компоненты с гидроксильным числом от 20 до 200, предпочтительно от 20 до 50 и функциональностью от 2 до 6, преимущественно от 2 до 3, причем соответствующие полиэфирполиолы на основе простых полиэфиров имеют среднечисловую молекулярную массу от 2000 до 8000, а соответствующие полиэфирполиолы на основе сложных полиэфиров имеют среднечисловую молекулярную массу от 2000 до 4000. При необходимости, в качестве полиольного компонента в) могут совместно использоваться полиолы с гидроксильным числом от 201 до 899 и функциональностью от 2 до 3. Особенно пригодными являются полиолы, выбранные из группы полиэфирполиолов на основе простых и сложных эфиров, таких как полученные по реакции присоединения алкиленоксидов, таких как оксид этилена и оксид пропилена, к многофункциональному исходному соединению, такому как этиленгликоль, пропиленгликоль, глицерин, триметилолпропан, сорбит и/или этилендиамин, либо полученные конденсацией дикарбоновых кислот, таких как адипиновая кислота, янтарная кислота, глутаровая кислота, пробковая кислота, себациновая кислота, малеиновая кислота, фталевая кислота, преимущественно, с бифункциональными гидроксикомпонентами, такими как этиленгликоль, пропиленгликоль, полученные из оксида этилена и оксида пропилена, а также с глицерином, триметилолпропаном, этилендиамином, пропиленгликолем, этиленгликолем, сорбитом и их смесью с исходным соединением. Могут также в качестве полиольного компонента б) использоваться модифицированные полиолы, такие как полученные привитой сополимеризацией полиолов со стиролом и/или акрилонитрилом, в виде дисперсий полимочевины или в виде PIPA-полиолов (полиолов, полученных полиприсоединением полиизоцианатов). Полиэфирполиолы на основе простых и сложных эфиров могут использоваться как индивидуально, так и в смеси друг с другом.
В качестве компонента г) особенно пригодны также удлинители цепи, гидроксильное число или аминное число которых составляет от 600 до 1850, а функциональность - от 2 до 4, особенно от 2 до 3. При этом в качестве примера можно назвать гликоли, такие как этиленгликоль, 1,4-бутандиол, глицерин, триметилолпропан и короткоцепочечные продукты их оксиалкилирования, а также изомеры диэтилтолуилендиамина. Сшивающий компонент г) (компонент, являющийся удлинителем цепи) используют в количестве от 3 до 20% мас. относительно суммы количеств полиольных компонентов б) и в) (в случае присутствия), причем в качестве диолов предпочтительны этиленгликоль и 1,4-бутандиол, а в качестве диамина изомеры диэтилтолуилендиамина.
В качестве компонента д) могут быть использованы, в принципе, известные специалисту добавки, активаторы и/или стабилизаторы. Ими могут быть, например, соединения, содержащие третичные аминогруппы, такие как 1,4-диазо-[2.2.2]-бициклооктан или бис(2-диметиламиноэтиловый) эфир, металлорганические соединения, такие как дилаурат диметилолова или дилаурат дибутилолова, пасты красителей, средства, предохраняющие от пожелтения, наполнители, антипирены, инертные смазки или стабилизаторы, такие как описаны в европейской заявке на патент ЕР-А 364854.
Количество их зависит от конкретного предназначения и может быть определено опытным путем.
Получение формованного изделия по изобретению также известно специалисту и не требует более детального описания (смотри европейскую заявку на патент ЕР-А 364854).
Полученные способом по изобретению от мягких до полужестких полиуретановые пенопласты с интегральной структурой, как правило, имеют в краевой зоне твердость по Шору А между 30 и 90 и жесткость при деформации сжатия между 30 и 350 кПа при кажущейся плотности между 150 и 900 кг/м3.
Особенно выгодна у полученных способом по изобретению интегральных пенопластов комбинация высокой поверхностной твердости (по Шору А) с низкой жесткостью при деформации сжатия формованного изделия, что указывает на явную интегральную структуру.
Областью использования формованного изделия по изобретению являются, например, велосипедные седла, предохранительные клапаны, оснащение внутреннего помещения автомобилей (подлокотники, подголовники, обшивка руля), мотоциклетные сидения, подлокотники для конторской мебели, а также процедурные стулья в области медицины.
Примеры
Описание исходного сырьевого материала
Полиолы
Полиол 1: полиэфирполиол с гидроксильным числом 29 с преобладанием первичных гидроксильных групп, полученный по реакции присоединения 80% мас. оксида пропилена и 20% мас. оксида этилена к пропиленгликолю в качестве исходного соединения.
Полиол 2: полиэфирполиол с гидроксильным числом 28 с преобладанием первичных гидроксильных групп, полученный по реакции присоединения 80% мас. оксида пропилена и 20% мас. оксида этилена к триметилолпропану в качестве исходного соединения, на который привиты стиролакрилонитрил в количестве 20% мас.
Полиол 3: полиэфирполиол с гидроксильным числом 35 с преобладанием первичных гидроксильных групп, полученный по реакции присоединения 87% мас. оксида пропилена и 13% мас. оксида этилена к триметилолпропану в качестве исходного соединения.
Полиизоцианат
Форполимер полиизоцианата с содержанием изоцианата 28% мас., полученный взаимодействием смеси полиизоцианатов ряда дифенилметана, полученных фосгенированием продукта конденсации анилина и формальдегида и содержащих 30% мас. изоцианата с 80% мас. диизоцианатодифенилметана, а также 20% мас. более высокоядерных гомологов, с полиэфиром, имеющим гидроксильное число 500, полученным по реакции присоединения оксида пропилена к пропиленгликолю в качестве исходного соединения.
Порообразователь
Краткое обозначение | Наименование | Молекулярная масса | Температура кипения, [°C] |
R 134a1 | 1,1,1,2-тетрафторэтан | 102 | -26,5 |
R 245fa1 | 1,1,1,3,3-пентафторпропан | 134 | 15 |
R 356mffm1 | 1,1,1,4,4,4-гексафторбутан | 166 | 24,6 |
R 365mfc | 1,1,1,3,3-пентафторбутан | 148 | 40 |
R 365mfc/R 134a (93:7)1 | 1,1,1,3,3-пентафторбутан/ 1,1,1,2-тетрафторэтан | 145** | 20 |
R 365mfc/R 245fa (50:50) 1 | 1,1,1,3,3-пентафторбутан/ 1,1,1,3,3-пентафторпропан | 141** | 24 |
R 365mfc/R 245fa (95:5)1 | 1,1,1,3,3-пентафторбутан/ 1,1,1,3,3-пентафторпропан | 147,3** | 37 |
н-пентан | 72 | 36 | |
Изогексан | 86 | 61 | |
** средняя молекулярная масса 1 не имеет точки воспламенения согласно DIN 51755 Т2 |
Получение испытуемого образца
Описанную ниже смесь исходного сырьевого материала загружают в нагретую до 40°С пластинчатую форму для механической переработки полиуретанов обычным образом с размерами 190×155×20 мм, уплотняют до 250 кг/м3 и извлекают из формы через 10 минут. Температура исходной сырьевой смеси составляет 25°С.
Полиольная композиция, мас.ч:
Полиол 1 | 40,0 |
Полиол 2 | 35,0 |
Полиол 3 | 30,0 |
Этиленгликоль | 9,0 |
Вода | 0,1 |
Силиконовый стабилизатор | 0,3 |
(SH 205, Witco Surfactants GmbH, D-36396 Steinau)
Активатор: | 0,35 |
(DABCO® 33LV, Air Products GmbH, D-45527 Hattingen).
Рецептура образца для испытаний
Полиольная композиция А | 100 |
Изоцианат А | 48 |
Порообразователь | смотри Таблицу 1 |
Таблица 1 Примеры 1-8 | |||||
Примеры | Порообразователь | Масс. части | Жесткость при сжатии [кПа] | Твердость [по Шору] | Коэф-т интегральн. структуры |
1 | R 134a | 3,5# | 80 | 42 | 1,90 |
3 | R 356mffm | 13.5 | 70 | 41 | 1,71 |
2 | R 245fa | 11 | 63 | 50 | 1,26 |
4 (по изоб.) | R 365mfc/R 134a (93:7) | 12 | 45 | 60 | 0,75 |
5 (по изоб.) | R 365mfc/R 245fa (50:50) | 12 | 43 | 60 | 0,71 |
6 (по изоб.) | R 365mfc/R 245fa (95:5) | 12 | 42 | 60 | 0,70 |
7* | R 365mfc | 12 | 41 | 60 | 0,68 |
8* | н-пентан | 6 | 51 | 60 | 0,85 |
9* | изогексан | 7 | 42 | 59 | 0,71 |
* горючий # максимально растворимое количество порообразователя в полиольном компоненте |
Профиль свойств интегральных пенопластов определяют по особому критерию посредством поверхностной твердости (измеренной по Шору А), а также посредством жесткости при сжатии. Выгодной является как можно более высокая поверхностная твердость (высокая кажущаяся плотность в краевой области), сочетающаяся с низкой жесткостью при сжатии в сравнении с предусмотренной для общей кажущейся плотности. При этом в качестве размерности для оценки интегральной структуры можно взять коэффициент интегральной структуры - поправочный коэффициент из жесткости при сжатии и поверхностной твердости. Чем меньше значение поправочного коэффициента, тем лучше интегральная структура.
Как показывают примеры, этот коэффициент сильно зависит от выбора порообразователя. Достигаемые со смесью порообразователей по изобретению поправочные коэффициенты (примеры 4-6) значительно ниже, чем при использовании R 134a, R 245fa или R 356mffm и с алканпорообразующими системами. К тому же, порообразующая смесь не горюча в противоположность алканам или чистому R 365mfc.
Класс C08J9/34 химические способы изготовления изделий, состоящих из сердцевины, сделанной из вспененного высокомолекулярного вещества, и поверхностного слоя из высокомолекулярного вещества с более высокой плотностью, чем у сердцевины
Класс C08G18/65 низкомолекулярные соединения, содержащие активный атом водорода в комбинации с высокомолекулярными соединениями, содержащими активный атом водорода