способ дегидрирования и пиролиза углеводородов в присутствии водяного пара

Классы МПК:C10G9/36 с нагретыми газами или парами 
Автор(ы):, , , , , ,
Патентообладатель(и):Агаджанян Светлана Ивановна (RU)
Приоритеты:
подача заявки:
2004-02-11
публикация патента:

Изобретение относится к дегидрированию и пиролизу углеводородов в присутствии водяного пара. Водяной пар получают из воды, которую предварительно обрабатывают излучением электромагнитного сверхвысокочастотного (СВЧ) диапазона, преимущественно до температуры кипения. Технический результат состоит в повышении выхода целевых продуктов по сравнению с выходом при использовании обычной воды. 1 з.п. ф-лы, 2 табл.

Формула изобретения

1. Способ дегидрирования и пиролиза углеводородов в присутствии водяного пара, отличающийся тем, что, с целью увеличения выхода целевых продуктов, водяной пар получают из воды, которую предварительно обрабатывают электромагнитным излучением сверхвысокочастотного диапазона.

2. Способ по п.1, отличающийся тем, что, с целью максимального увеличения выхода целевых продуктов дегидрирования и пиролиза углеводородов, воду обрабатывают СВЧ-излучением до достижения температуры ее кипения.

Описание изобретения к патенту

Изобретение относится к дегидрированию и пиролизу углеводородов в присутствии водяного пара с целью получения стирола, изопрена и низкомолекулярных олефинов под действием электромагнитного излучения сверхвысокочастотного (СВЧ) диапазона.

Известны примеры использования электромагнитного поля СВЧ-диапазона для интенсификации технологических процессов, в том числе и химических [1-6]. По мнению большинства авторов интенсификация связана с быстрым и равномерным нагревом реакционной массы [1-3, 5] или катализатора [4, 6]. Значительное увеличение скорости реакции Принса при СВЧ-нагреве реакционной массы не приводит к росту выхода целевых (конечных) продуктов реакции по сравнению с выходами при другом способе нагрева [5]. СВЧ-нагрев катализатора дегидрирования бутиленов до бутадиена позволяет повысить КПД используемой на реакцию энергии, но не увеличивает выход бутадиена по сравнению с традиционными способами нагрева [4, 6].

Предлагаемое решение принципиально отличается от приведенных примеров тем, что СВЧ-обработке подвергается один из компонентов реакционной смеси - вода в жидком состоянии, которая затем поступает на обычные циклы процесса дегидрирования или пиролиза, в результате чего происходит увеличение выхода целевых продуктов (стирола, изопрена, этилена с пропиленом) по сравнению с их выходами при использовании обычной воды. Эффект СВЧ-обработки воды проявляется довольно продолжительное время, исчезая полностью лишь в течение суток, несмотря на то, что вместе с сырьем обработанная вода до поступления в реактор подвергалась воздействию высоких температур в испарителе и предварительном подогревателе (570°С). Это означает, по-видимому, что при СВЧ-обработке вода на некоторое время приобретает какие-то новые физико-химические свойства, которые обуславливают ее положительный эффект в этих реакциях.

Предварительно обработанную воду можно использовать при любых способах подвода тепла в зону реакции, а СВЧ-обработку воды в жидком виде включить как предварительную стадию для эксплуатируемых в настоящее время установок каталитического дегидрирования и пиролиза углеводородов.

Дегидрирование этилбензола и изоамиленов проводили на железном катализаторе К-24, при температурах 600±3°С и объемной скорости подачи сырья 1,2 час-1 и 2,0 час-1 соответственно. Воду и сырье в массовом отношении вода-этилбензол 3:1 и вода-изоамилен 4:1 подавали в предварительный подогреватель и далее в реактор. Продукты реакции анализировали с помощью газожидкостной хроматографии.

Обработку 500 г дистиллированной воды, помещенной в химический стакан, проводили в бытовой микроволновой печи с максимальной мощностью 800 Вт в течение разного времени, вплоть до кипения. Температуру воды после обработки замеряли. Степень воздействия СВЧ-излучения условно оценивали удельной затратой энергии (Дж/г), величина которой представляла собой отношение произведения времени обработки (сек), на выставленную мощность печи (Вт), к весу воды.

В таблице 1 приведены экспериментальные примеры влияния времени обработки на выход стирола при дегидрировании этилбензола. С ростом удельной затраты энергии при СВЧ-обработке воды выход стирола увеличивается. Максимальный выход стирола достигается при использовании воды, доведенной в СВЧ-печи до кипения. Выход стирола возрастает на 6% мас., прирост - около 10% по отношению к выходу стирола в опыте с использованием обычной воды. Селективность реакции дегидрирования при использовании обработанной СВЧ-излучением воды осталась на прежнем уровне.

Таблица 1

Дегидрирование этилбензола в присутствии водяного пара, полученного из воды, предварительно обработанной электромагнитным излучением СВЧ-диапазона при выставленной мощности печи 600 Вт
№№ п/п Удельная затрата энергии при обработке, Дж/г Температура воды после обработки, °С Выход стирола на пропущенное сырье, % мас.
1- -62,50
2 14441 64,95
3204 5965,95
4288 6866,31
5 36091 67,90
6468 до кипения68,52

При дегидрировании изоамиленов с водой, доведенной до кипения СВЧ-излучением, выход изопрена составил 37,24% мас. По сравнению с дегидрированием с использованием обычной воды, увеличение выхода составило 3,5% мас.

Пиролиз бензина проводили на лабораторной установке. С помощью плунжерных насосов вода и бензин через испаритель (280°С) и предварительный подогреватель (570°С) в виде парогазовой смеси поступали в реактор пиролиза. Реактор представлял собой полую трубку из нержавеющей стали Х18Н10Т внутренним диаметром 12 мм и длиной 250 мм. Температура в середине реактора поддерживалась равной 810±4%°С при помощи термопары ХК, помещенной в карман для термопары. Продукты пиролиза проходили через водяной холодильник, где конденсировались высококипящие компоненты, и систему ловушек, температура в которых поддерживалась в пределах - 20±0,05°С. В ловушках конденсировались более легкокипящие компоненты, которые значительно осложнили бы анализ пирогаза. После ловушек пирогаз, содержащий водород, углеводороды C13 и небольшое количество углеводородов С45, поступал в дозатор хроматографа и далее в газовые часы для замера общего объема стабилизированного пирогаза, образовавшегося за время опыта. Пробу пирогаза из дозатора всегда запускали по прошествии % времени эксперимента. Перед каждым запуском пирогаза для определения концентрации этилена и пропилена в нем проводили калибровку показаний хроматографа, запуская такую же дозу стандартного газа следующего состава, % об.: метан - 42,0; этилен - 43,7; пропилен - 14,3.

После окончания каждого опыта по пиролизу бензина на установке проводили окислительный выжиг кокса в реакторе. Для этого в испаритель подавали воздух, выключали нагрев реактора и продували воздух до тех пор, пока температура в реакторе не понижалась до 500°С.

Так как пиролиз углеводородов протекает при более высоких температурах и низком массовом отношении вода-сырье (1:2), чем при дегидрировании этилбензола и изоамиленов, предполагалось, что эффект влияния СВЧ-обработки воды будет проявляться слабее. Все опыты, кроме одного, были проведены с водой, доведенной до кипения при разных мощностях СВЧ-печи.

В таблице 2 представлены результаты экспериментов по пиролизу прямогонного бензина в зависимости от выставленной мощности СВЧ-печи по обработке воды в расчете на 100 г бензина, подвергнутого превращению.

Из таблицы 2 видно, что несмотря на незначительное уменьшение концентрации пропилена в пирогазе, в оп. 2, 4 и 5 наблюдается рост выхода пропилена за счет увеличения объемов выхода пирогаза по сравнению с оп. 1. Относительный рост выхода этилена и пропилена в опытах 2, 4 и 5 по сравнению с опытом 1, составил в среднем 9% и 5%, соответственно.

Таблица 2

Пиролиз прямогонного бензина в присутствии водяного пара, полученного из воды, предварительно обработанной СВЧ-электромагнитным излучением.
№№ п/пПредварительная СВЧ-обработка водыКонцентрация в пирогазе, % об.Объем пирогаза при НТД, дм3Выход в г или % мас. на сырьеОтносительный рост выхода, %
Мощность, Вт Удельная затрата энергии, Дж/г Температура после обработки, °СС 2Н4С 3Н6C 2H4C 3H6С 2Н4С 3Н6
1    29,4713,29 65,7224,21 16,35  
2360 413до кип.30,30 13,1170,24 26,6017,299,9 5,7
3 60029470 29,2713,0568,80 25,6916,84 6,13,0
4 600468 до кип.30,2213,09 70,0026,43 17,189,25,1
5600 456до кип.30,35 13,0070,00 26,5817,069,7 4,3

ЛИТЕРАТУРА

1. Wall E.T., Damrauer R., Lutz W., Dies R., Cranney M. Retorting Oil Shale by Micro wave Power. Thermal Hydrocarbon Chemistry. Adv in Chemistry Ser. 183, - Washington, 1979. - P.329.

2. Архангельский Ю.С., Девяткин И.И. Сверхвысокочастотные нагревательные установки для интенсификации технологических процессов. - Саратов, Изд. Саратовского университета, - 1983. - 140 с.

3. Michael D., Mingos P., Baghurst R. Application of. Microwave Dielectric Heating to Synthetic Problem of Chemistry // Chem. Soc. Rev. - 1991, v.20, №1, - р.47.

4. Патент РФ №02117650, С 07 С, 5/333, публ. 20.08.98. Способ каталитического дегидрирования углеводородов. Бикбулатов И.Х., Даминов P.P., Шулаев Н.С., Кутузов П.И., Арсланова А.Х.

5. Зорин В.В., Масленников С.И., Шавшурова С.Ю., Шахова Ф.А., Рахманкулов Д.А. Интенсификация реакции Принса в условиях микроволнового нагрева. // Ж. Орг. Химии. - 1998, т.34, вып.5. - С.768.

6. Бикбулатов И.Х., Даминов P.P., Кузеев И.Р., Шулаев Н.С., Базонин А.В., Бахонина Е.И., Бухаров В.Р. Применение электромагнитного сверхвысокочастотного излучения для каталитического дегидрирования углеводородов. // Нефтехимия и нефтепереработка. - 2002, №2. - С.19.

Класс C10G9/36 с нагретыми газами или парами 

способ подготовки тяжелого углеводородного сырья к термической конверсии -  патент 2522303 (10.07.2014)
способ и устройство переработки тяжелого нефтяного сырья -  патент 2518080 (10.06.2014)
способ термоокислительного крекинга тяжелых нефтяных остатков -  патент 2502785 (27.12.2013)
способ термической конверсии тяжелого углеводородного сырья -  патент 2500789 (10.12.2013)
способ переработки тяжелого углеводородного сырья -  патент 2490308 (20.08.2013)
способ термической переработки высокомолекулярного углеродсодержащего сырья в более легкие соединения -  патент 2468065 (27.11.2012)
способ термоокислительного крекинга тяжелых нефтяных остатков -  патент 2458967 (20.08.2012)
способ, реактор и установка термического крекинга тяжелого минерального масла -  патент 2441054 (27.01.2012)
способ и установка термического крекинга тяжелого минерального масла -  патент 2423408 (10.07.2011)
способ дегидрирования и пиролиза углеводородного сырья -  патент 2415901 (10.04.2011)
Наверх