реактор с блочным катализатором сотовой структуры

Классы МПК:B01J8/02 с неподвижными частицами, например в стационарных слоях
B01J35/04 пористые, ситовые, решетчатые или сотовые структуры
Автор(ы):, ,
Патентообладатель(и):Российский химико-технологический университет им. Д.И. Менделеева (RU)
Приоритеты:
подача заявки:
2004-05-27
публикация патента:

Предложенный реактор относится к химической промышленности и используется, например, для улавливания оксидов азота и других вредных веществ из отходящих газов. Реактор содержит корпус с патрубками для ввода исходных реагентов, внутри которого размещен блочный катализатор сотовой структуры. Сквозные каналы катализатора по отношению к набегающему потоку сориентированы под углом 90°. Гидравлический диаметр сквозных каналов различной геометрической формы, начиная с первого по ходу потока, монотонно увеличивается, достигая отношения гидравлических диаметров последнего канала к первому не более 1,5. Не более 1/6 высоты от низа блока блочный катализатор сотовой структуры имеет сетчато-ячеистую структуру с размером ячейки от 1,5 до 3 мм и удельной поверхностью до 8...10 м2/г. Данное техническое решение обеспечивает увеличение доступности внутренней поверхности нижней части блочного катализатора сотовой структуры и полное включение ее в работу. 4 ил. реактор с блочным катализатором сотовой структуры, патент № 2265481

реактор с блочным катализатором сотовой структуры, патент № 2265481 реактор с блочным катализатором сотовой структуры, патент № 2265481

Формула изобретения

Реактор с блочным катализатором сотовой структуры, содержащий корпус с патрубками для ввода исходных реагентов, внутри которого размещен блочный катализатор сотовой структуры, сквозные каналы которого по отношению к набегающему потоку сориентированы под углом 90°, а гидравлический диаметр сквозных каналов различной геометрической формы, начиная с первого по ходу потока, монотонно увеличивается, достигая отношения гидравлических диаметров последнего канала к первому не более 1,5, отличающийся тем, что не более 1/6 высоты от низа блока блочный катализатор сотовой структуры имеет сетчато-ячеистую структуру с размером ячейки 1,5-3 мм и удельной поверхностью до 8-10 м2/г.

Описание изобретения к патенту

Изобретение относится к каталитическим реакторам, а именно к реакторам с блочным катализатором сотовой структуры, и может быть использовано в химической промышленности для улавливания оксидов азота и других вредных веществ из отходящих газов или для проведения определенных стадий в процессах получения серной, азотной и других кислот, реакций нитрования органических соединений и т.д.

Известно, что для осуществления такого рода процессов широкое распространение получили зернистые катализаторы, засыпаемые в неподвижный катализаторный слой «внавал», образуя неупорядоченный слой (см. Кириллов В.А., Огарков Б.Л., Воронов В.Г. Гидродинамические режимы в трехфазном неподвижном зернистом слое. Теоретический анализ //Инженерно-физический журнал. 1976. Т.31. №3. С.402). Неупорядоченный зернистый неподвижный катализаторный слой обладает рядом недостатков: доступность поверхности, тепло- и массоперенос у зерен катализатора в значительной степени зависят от режимов обтекания, которые в таком слое имеют сложную неустойчивую структуру. Из-за неоднородности упаковки зерен в неупорядоченном слое течение потока становится также неоднородным. Прохождение потока через зернистый слой, состоящий из зерен различной формы (гранулы, таблетки, кольца и т.д.), характеризуется неравномерностью распределения скоростей по сечению и объему слоя. Кроме того, в зависимости от расходов потока и размеров зерна в неупорядоченном неподвижном зернистом катализаторном слое обнаружено пять наиболее характерных гидродинамических режимов, что усложняет управление его использованием.

Известен реактор с блочным катализатором сотовой структуры (см. Беспалов А.В. и др. Численное моделирование течения в каналах блочного катализатора // Теоретические основы химической технологии. 1991. Т.25. №2. С.234). Характерные размеры блочных катализаторов сотовой структуры значительно превышают размеры зерен, благодаря чему они могут быть так уложены в реакторе, что образуют упорядоченную структуру неподвижного катализаторного слоя, являющуюся наиболее благоприятной для реализации химических превращений, особенно в том случае, если процесс тормозится диффузионным переносом. По входному патрубку поток с исходными реагентами поступает в корпус реактора, внутри которого размещен блочный катализатор сотовой структуры. Каналы в блочном катализаторе сотовой структуры - сквозные и имеют по всей высоте блочного катализатора один и тот же гидравлический диаметр. Сквозные каналы по отношению к набегающему потоку сориентированы под углом, равным 90°. Поток обтекает блочный катализатор сотовой структуры сверху вниз, причем поток подается таким образом, чтобы создать несколько различные потенциальные скорости по обе стороны блочного катализатора сотовой структуры. В этом случае происходит контактирование реагентов потока с катализатором как по всей его внешней поверхности, так и по поверхности сквозных каналов. При таком расположении блочного катализатора сотовой структуры в реакторе выделяют два основных гидродинамических режима: протекание и проникновение (вместо пяти для неупорядоченного зернистого неподвижного катализаторного слоя), причем характерным течением потока в сквозных каналах блочного катализатора является протекание, поскольку проникновение реализуется, начиная с 1/6 высоты от низа блочного катализатора сотовой структуры.

Недостаток такого реактора с блочным катализатором сотовой структуры: начиная с 1/6 высоты от низа блока, реализуется второй гидродинамический режим - проникновение. При этом гидродинамическом режиме 1/6 блочного катализатора сотовой структуры практически не используется, особенно при небольших числах Рейнольдса (например, менее 50).

Наиболее близким к предлагаемому техническому решению является реактор с блочным катализатором сотовой структуры, в котором было уменьшено число гидродинамических режимов работы блочного катализатора сотовой структуры (Беспалов А.В., Чечеткина Е.М. Реактор с блочным катализатором сотовой структуры. Патент РФ №2172643. 27.08.2001, Бюл. №24). Это было достигнуто изготовлением сквозных каналов различной геометрической формы (например, круглая, квадратная, шестиугольная, треугольная и т.д.) в блочном катализаторе сотовой структуры с различным гидравлическим диаметром, причем гидравлический диаметр сквозных каналов в блочном катализаторе сотовой структуры монотонно увеличивается сверху вниз по ходу потока, достигая отношения гидравлических диаметров последнего канала к первому не более 1,5.

При наличии монотонно увеличивающихся гидравлических диаметров сквозных каналов в блочном катализаторе сотовой структуры сверху вниз по ходу потока происходит контактирование реагентов с катализатором как по внешней поверхности блочного катализатора сотовой структуры, так и по всей поверхности сквозных потоков, включая и сквозные каналы, расположенные на 1/6 высоты от низа блочного катализатора сотовой структуры, при этом наблюдается более полное использование катализатора по всей высоте блочного катализатора сотовой структуры. Расчетным путем, получив профиль скорости течения Пуазейля в сквозных каналах блочного катализатора сотовой структуры и решая систему двумерных уравнений для переменных: функция тока - завихренность, а также экспериментально (методом трассирования), было обнаружено, что во всех сквозных каналах по высоте блочного катализатора сотовой структуры наблюдается только один гидродинамический режим - протекание. При этом отношение гидравлических диаметров последнего и первого сквозных каналов в зависимости от потенциальных скоростей потока по обе стороны блочного катализатора сотовой структуры может достигать величины не более 1,5.

К недостатку рассматриваемого технического решения можно отнести незначительную доступность внутренней поверхности блочного катализатора сотовой структуры, начиная с 1/6 высоты от низа блока.

Технический результат, достигаемый при реализации данного изобретения, заключается в увеличении доступности внутренней поверхности нижней части блочного катализатора сотовой структуры и полном включения ее в работу.

Указанный технический результат достигается тем, что в реакторе с блочным катализатором сотовой структуры, содержащем корпус с патрубками для ввода исходных реагентов, внутри которого размещен блочный катализатор сотовой структуры, сквозные каналы которого по отношению к набегающему потоку сориентированы под углом 90°, а гидравлический диаметр сквозных каналов различной геометрической формы, начиная с первого по ходу потока, монотонно увеличивается, достигая отношения гидравлических диаметров последнего канала к первому не более 1,5, согласно изобретению не более 1/6 высоты от низа блока блочного катализатора сотовой структуры имеет сетчато-ячеистую структуру с размером ячейки от 1,5 до 3 мм и удельной поверхностью до 8...10 м 2/г.

Сущность изобретения поясняется чертежами, где на фиг.1 изображен общий вид реактора с блочным катализатором; на фиг.2-4 - варианты выполнения сквозных каналов блочного катализатора различной геометрической формы.

Реактор с блочным катализатором сотовой структуры состоит из корпуса 1 с входным и выходным патрубками 2 и 3, внутри которого расположен блочный катализатор сотовой структуры 4, сквозные каналы различной геометрической формы 5 (например, круглая, квадратная, шестиугольная, треугольная и т.д.) которого по отношению к набегающему потоку сориентированы под углом, равным 90°. Гидравлический диаметр сквозных каналов монотонно увеличивается сверху вниз по ходу потока. Начиная с 1/6 высоты (не более) от низа блока сплошная часть блочного катализатора сотовой структуры представляет собой сетчато-ячеистую структуру с размером ячейки от 1,5 до 3 мм и удельной поверхностью до 8...10 м2/г.

Устройство работает следующим образом. По входному патрубку 2 поток с исходными реагентами поступает в корпус 1 реактора, внутри которого расположен блочный катализатор сотовой структуры 4 со сквозными каналами различной геометрической формы 5 (например, круглая, квадратная, шестиугольная, треугольная и т.д.), расположенными под углом к набегающему потоку, равным 90°, а начиная с 1/6 высоты от низа блока сплошная часть блочного катализатора сотовой структуры представляет собой сетчато-ячеистую структуру с размером ячейки от 1,5 до 3 мм и удельной поверхностью до 8...10 м2/г. Поток обтекает блочный катализатор сотовой структуры сверху вниз, причем поток подается таким образом, чтобы создать несколько различные потенциальные скорости по обе стороны блочного катализатора сотовой структуры. При наличии монотонно увеличивающихся гидравлических диаметров сквозных каналов в блочном катализаторе сотовой структуры сверху вниз по ходу потока происходит контактирование реагентов с катализатором как по внешней поверхности блочного катализатора сотовой структуры, так и по всей поверхности сквозных потоков, включая и сквозные каналы, расположенные на 5/6 высоты от низа блочного катализатора сотовой структуры, а при наличии, начиная с 1/6 высоты от низа блока, сплошной части блочного катализатора сотовой структуры в виде сетчато-ячеистой структуры с размером ячейки от 1,5 до 3 мм и удельной поверхностью до 8...10 м2/г наблюдается практически полная доступность внутренней поверхности нижней части блочного катализатора сотовой структуры потоком со всех сторон (с внешней, со стороны сквозных каналов), что показано экспериментально (методом трассирования), и полное включение ее в работу, что приводит к более полному использованию катализатора по всей высоте блочного катализатора сотовой структуры.

Таким образом, комбинирование сотовой структуры, расположенной на 5/6 высоты от низа блочного катализатора, и сетчато-ячеистой структуры, расположенной не более 1/6 высоты от низа блока в блочном катализаторе, приводит к практически полной доступности внутренней поверхности нижней части блочного катализатора сотовой структуры потоком со всех сторон и полному включению ее в работу и позволяет более полно использовать блочный катализатор сотовой структуры при любых числах Рейнольдса.

Класс B01J8/02 с неподвижными частицами, например в стационарных слоях

реактор с радиальным пространством -  патент 2514950 (10.05.2014)
способ получения ненасыщенных карбоксилатов -  патент 2503653 (10.01.2014)
реактор для гидропереработки углеводородного сырья -  патент 2495910 (20.10.2013)
катализатор и способ дисмутации содержащих водород галогенсиланов -  патент 2492924 (20.09.2013)
реакторы пластинчатого типа, способы их изготовления и способ получения реакционного продукта с использованием реактора пластинчатого типа -  патент 2489203 (10.08.2013)
способ и реактор для окисления углеводорода -  патент 2487749 (20.07.2013)
изотермический химический реактор с пластинчатым теплообменником -  патент 2482909 (27.05.2013)
пусковой нагреватель для реакторов синтеза аммиака -  патент 2481888 (20.05.2013)
способ проведения синтеза фишера-тропша и реактор для его осуществления -  патент 2481151 (10.05.2013)
устройство и способ для каталитических газофазных реакций, а также их применение -  патент 2474469 (10.02.2013)

Класс B01J35/04 пористые, ситовые, решетчатые или сотовые структуры

фильтр для фильтрования вещества в виде частиц из выхлопных газов, выпускаемых из двигателя с принудительным зажиганием -  патент 2529532 (27.09.2014)
сотовый элемент с многоступенчатым нагревом -  патент 2525990 (20.08.2014)
состав шихты для высокопористого керамического материала с сетчато-ячеистой структурой -  патент 2525396 (10.08.2014)
фольга из нержавеющей стали и носитель катализатора для устройства очистки выхлопного газа, использующий эту фольгу -  патент 2518873 (10.06.2014)
сотовый элемент из фольги и способ его изготовления -  патент 2517941 (10.06.2014)
окислительный катализатор -  патент 2505355 (27.01.2014)
удерживающие nox материалы и ловушки, устойчивые к термическому старению -  патент 2504431 (20.01.2014)
способ приготовления катализатора для очистки отработавших газов двигателей внутреннего сгорания и катализатор, полученный этим способом -  патент 2502561 (27.12.2013)
сотовый элемент с профилированным металлическим листом -  патент 2500902 (10.12.2013)
каталитический реактор -  патент 2495714 (20.10.2013)
Наверх