подложка для выращивания эпитаксиальных слоев арсенида галлия

Классы МПК:C30B19/12 характеризуемое подложкой
C30B25/18 характеризуемое подложкой
C30B29/10 неорганические соединения или композиции
C30B29/42 арсенид галлия
C30B15/00 Выращивание монокристаллов вытягиванием из расплава, например по методу Чохральского
Автор(ы):
Патентообладатель(и):Институт радиотехники и электроники РАН (RU)
Приоритеты:
подача заявки:
2003-12-11
публикация патента:

Изобретение относится к получению монокристаллических материалов и пленок и может использоваться в технологии полупроводниковых материалов для изготовления солнечных элементов, интегральных схем, твердотельных СВЧ-приборов. В качестве материалов подложек для выращивания пленок GaAs ориентации (100) используются монокристаллы интерметаллических соединений, выполненные из одного из бинарных сплавов: NiAl, CoAl, AlTi, NiGa. Изобретение позволяет выращивать зеркальные эпитаксиальные пленки арсенида галлия в более широком диапазоне температур осаждения и пересыщения, обеспечивает упрощение технологии изготовления приборов и снижает их стоимость. 2 з.п. ф-лы.

Формула изобретения

1. Подложка для выращивания эпитаксиальных пленок арсенида галлия, выполненная из монокристалла интерметаллического соединения, отличающаяся тем, что интерметаллическое соединение является одним из бинарных сплавов никеля, кобальта, титана с алюминием или бинарным сплавом никеля с галлием, при этом поверхность роста подложки имеет ориентацию (100).

2. Подложка по п.1, отличающаяся тем, что бинарные сплавы никеля с алюминием и никеля с галлием дополнительно содержат интерметаллическое соединение, являющееся бинарным сплавом бериллия с никелем в количестве 22,6±3 ат.% и 20,6±3 ат.% соответственно.

3. Подложка по п.1, отличающаяся тем, что бинарные сплавы кобальта с алюминием и титана с алюминием дополнительно содержат интерметаллическое соединение, являющееся бинарным сплавом бериллия с кобальтом в количестве 15,4±3 ат.% и 1,8±0,3 ат.% соответственно.

Описание изобретения к патенту

Изобретение относится к электронной технике, в частности, к технологии материалов для создания полупроводниковых приборов - устройств приема, обработки и передачи информации. Арсенид галлия вследствие специфической особенности зонного строения нашел широкое применение в опто- и микроэлектронике. Основная часть приборов, использующих арсенид галлия, выполнена не на массивных кристаллах и срезах из них, а на эпитаксиальных пленках и слоях, выращенных на подложках из арсенида галлия. Известно, что выращивание больших монокристаллов GaAs приборного качества до сих пор представляет заметную трудность [1], поэтому по размеру выращиваемые кристаллы GaAs значительно уступают кристаллам кремния. Именно эта технологическая трудность сдерживает широкое применение приборов на основе GaAs, с одной стороны, а с другой - стимулирует работы по замене подложек из арсенида галлия на другие, эквивалентные по кристаллографическим параметрам в качестве подложечного материала арсениду галлия, но более простые по технологии их выращивания.

Известен ряд попыток заменить монокристаллы GaAs в качестве подложек на другие, более дешевые, в частности, на кремний - основной материал современной микроэлектроники как непосредственно, так и через нанесение промежуточных - переходных слоев. Заметное несоответствие кристаллических решеток кремния и арсенида галлия приводило к эффекту старения приборов [2].

Другой подход к решению этой проблемы предложен в работе [3] - выращивание пленок GaAs на интерметаллидах на основе сплавов переходных металлов 4-го периода с элементами 5-ой группы периодической системы элементов [3]. Большим достоинством этих подложек является использование для их получения материалов с низкой упругостью пара, что позволило существенно упростить процессы синтеза интерметаллида и выращивание монокристаллов: их удается проводить и в вакууме, и в нейтральной среде (аргон) - при атмосферном давлении. Это решение является наиболее близким к предлагаемому изобретению. Особенностью этих интерметаллидов является то, что их химический состав близок к химическому составу материалов для омического контакта для арсенида галлия.

Этим известным подложкам для выращивания эпитаксиальных слоев арсенида галлия присущ один существенный недостаток - интерметаллиды этой группы кристаллизуются в гексагональном типе кристаллической решетки. Выращенные на них монокристаллические пленки GaAs растут осью [111] перпендикулярно поверхности роста (0001) подложки.

Существуют определенные отличия в технологии выращивания эпитаксиальных пленок GaAs, связанные с ростом на различно ориентированных подложках (основные направления - [100], [110], [111]). К ним относятся: разная скорость роста, разная скорость травления, морфология поверхности, в частности, гладкость (зеркальность) поверхности. Для направления роста [111], используемого в прототипе, существует известная трудность в выращивании эпитаксиальных пленок GaAs, состоящая в узком диапазоне температур и пересыщении области зеркального роста: при небольшом отклонении параметров роста от оптимальных на поверхности роста появляются тригональные пирамиды роста, что приводит к ухудшению гладкости (зеркальности) и появлению рельефа на поверхности эпитаксиальных пленок. Негладкость эпитаксиальной поверхности приводит к существенным проблемам при проведении литографии на ее поверхности.

Поэтому в промышленности в основном (за исключением специальных случаев) для эпитаксиального роста используют поверхность (100) как более устойчивую к колебаниям параметров роста. С целью более полного использования существующей промышленной технологии выращивания пленок арсенида галлия на этой плоскости необходимы другие интерметаллиды.

Техническая задача, решаемая предлагаемым изобретением, заключается в разработке новых материалов, пригодных для использования их в качестве подложек для выращивания на их поверхности эпитаксиальных пленок GaAs (100) - ориентации, позволяющие использовать существующие промышленные технологии их роста, что дает возможность выращивания зеркальных эпитаксиальных пленок GaAs в более широком диапазоне температур осаждения и пересыщения.

Указанная цель достигается тем, что в качестве подложек для выращивания эпитаксиальных слоев GaAs используются монокристаллы интерметаллических соединений, выполненных из одного из следующих бинарных сплавов: NiAl, CoAl, AlTi, NiGa. При этом поверхность роста подложки имеет ориентацию (100).

Известно, что монокристаллы интерметаллидов переходных металлов 4-го периода периодической системы с элементами 3 группы - алюминием и галлием кристаллизуются в кубической (NiAl, CoAl, NiGa) и тетрагональной (AlTi) сингониях, образуя на поверхности роста (100) квадратные плоские двумерные решетки с близкими к арсениду галлия периодами кристаллических решеток. Поэтому они оказались перспективными для использования в качестве материалов для подложек при эпитаксии слоев GaAs. Для более полного согласования параметров кристаллических решеток подложек-интерметаллидов и GaAs в интерметаллиды NiAl и NiGa добавлен сплав интерметаллида NiBe в количестве и 22,6±3 ат% и 20,6±3 ат% соответственно, а в интерметаллиды CoAl и AlTi добавлен сплав интерметаллида СоВе в количестве 15,4±3 ат% и 1,8±0,3 ат% соответственно.

Из сплавов переходных металлов никеля, кобальта и титана с алюминием были синтезированы алюминий кобальт, алюминий никель, алюминий титан, а из сплавов галлия с никелем было синтезировано интерметаллическое соединение - GaNi. Отмечено, что реакции сплавления алюминия с никелем и кобальтом являются пирофорными и сопровождаются большим выделением тепла (происходит саморазогрев навески в тигле в процессе нагревания-(сплавления) компонентов в тигле.

Из синтезированных слитков методом Чохральского в установке «Кристалл - 3М» были выращены монокристаллы интерметаллидов: алюминий кобальт (температура роста ˜ 1650°±5°C), алюминий никель (температура роста ˜ 1660°±5°С), алюминий титан (1450°±5°С), никель галлий (температура роста ˜ 1220°±5°С). Эти монокристаллы выращивались как в вакууме (р˜1·10-5 мм рт.ст.), так и в газовой среде (аргон ˜ 1 атм) с использованием тигля из двуокиси циркония. В качестве исходных материалов использовались никель электролитический вакуумной переплавки 99,99% чистоты, кобальт электролитической переплавки - 99,9%, титан - 99,9%, алюминий - 99,9% - 99,9%, галлий - 99,99%, бериллий - 99,9%. В качестве затравок применялись монокристаллы, ранее выращенные в вертикальных печах. Скорость вращения затравок составляла 30-40 оборотов в минуту, скорость вытягивания монокристаллов находилась в пределах 1,5-7 мм в час. Диаметр выращенных монокристаллов составлял 10-35 мм, длина монокристаллов - 10-15 см.

Возможные включения, осевая и радиальная однородность проверялись металлографически и рентгенографически. Выращенные монокристаллы разрезались по плоскости (100) и полировались для последующего применения в качестве подложек для эпитаксии слоев GaAs.

Методом молекулярно-пучковой эпитаксии на этих подложках были выращены эпитаксиальные пленки GaAs толщиной 1-2 микрометра, по методике, описанной в [3]. Рентгено-топографические исследования выращенных эпитаксиальных структур показали существование несоответствия периодов кристаллических решеток:

2·a (CoAl)- a (GaAs)/a (GaAs)=1,35%

2·a (NiAl)- a (GaAs)/ a (GaAs)=2,2%

2·a (AlTi)- a (GaAs)/ a (GaAs)=0,13%

2·a (NiGa)- a (GaAs)/ a (GaAs)=1,97%,

где а - период соответствующих кристаллических решеток.

Пленки GaAs (100) ориентации, выращенные на этих подложках, были зеркально-гладкими. Гладкость подложек проверялась интерферометрически.

По методике, описанной выше, нами были синтезированы BeNi и ВеСо. Установлено, что добавление следующих количеств BeNi и ВеСо в тигель для выращивания монокристаллов приводит к существенному улучшению (вплоть до полного) согласования кристаллических решеток подложки-интерметаллида и выращенного эпитаксильного слоя GaAs:

22,6±3 атомных процента BeNi для NiAl

15,4±3 атомных процента ВеСо для CoAl

20,6±3 атомных процента BeNi для GaNi

1,8±0,5 атомных процента ВеСо для AlTi

Таким образом использование в качестве подложек для выращивания эпитаксиальных слоев GaAs указанных выше интерметаллических соединений позволяет выращивать пленки и слои GaAs по промышленной технологии, при этом существенно упрощается технология роста материала подложек при сохранении их высоких потребительских качеств.

Литература

1. М.Г.Мильвицкий. Полупроводниковые материалы в современной электронике. М., Наука, 1986.

2. P.Sheldon et al. Jour. Appl. Phys. 58(11), 4186 (1986).

3. Патент РФ №2209260, МПК С 30 В «Подложка для выращивания эпитаксиальных слоев арсенида галлия» (автор Айтхожин С.А.).

Класс C30B19/12 характеризуемое подложкой

Класс C30B25/18 характеризуемое подложкой

монокристаллический алмазный материал -  патент 2519104 (10.06.2014)
подложка для выращивания эпитаксиальных слоев арсенида галлия -  патент 2489533 (10.08.2013)
монокристалл нитрида, способ его изготовления и используемая в нем подложка -  патент 2485221 (20.06.2013)
способ нанесения центров зародышеобразования алмазной фазы на подложку -  патент 2403327 (10.11.2010)
подложка для выращивания эпитаксиальных слоев нитрида галлия -  патент 2369669 (10.10.2009)
метод выращивания неполярных эпитаксиальных гетероструктур на основе нитридов элементов iii группы -  патент 2315135 (20.01.2008)
подложка для эпитаксии (варианты) -  патент 2312176 (10.12.2007)
буля нитрида элемента iii-v групп для подложек и способ ее изготовления и применения -  патент 2272090 (20.03.2006)
способ получения исходного поликристаллического кремния в виде широких пластин с малой концентрацией фоновых примесей -  патент 2222649 (27.01.2004)
реактор для получения широких пластин исходного поликристаллического кремния -  патент 2222648 (27.01.2004)

Класс C30B29/10 неорганические соединения или композиции

способ создания на подложках монокристаллических пленок твердого раствора висмут-сурьма -  патент 2507317 (20.02.2014)
подложка для выращивания эпитаксиальных слоев арсенида галлия -  патент 2489533 (10.08.2013)
способ получения эпитаксиальных пленок твердого раствора (sic)1-x(aln)x -  патент 2482229 (20.05.2013)
тигель для выращивания монокристаллического слитка карбида кремния с нитридом алюминия и гетероструктур на их основе -  патент 2425914 (10.08.2011)
ферромагнитная полупроводниковая гетероструктура -  патент 2425184 (27.07.2011)
способ получения трехмерного фотонного кристалла на основе пленки опала с кремнием -  патент 2421551 (20.06.2011)
способ получения оптической среды на основе наночастиц sio2 -  патент 2416681 (20.04.2011)
способ получения на подложке кальций-фосфатного покрытия -  патент 2372101 (10.11.2009)
подложка для выращивания эпитаксиальных слоев нитрида галлия -  патент 2369669 (10.10.2009)
способ получения композиционного материала на основе фотонных кристаллов из оксида кремния -  патент 2358895 (20.06.2009)

Класс C30B29/42 арсенид галлия

Класс C30B15/00 Выращивание монокристаллов вытягиванием из расплава, например по методу Чохральского

способ получения крупногабаритных монокристаллов антимонида галлия -  патент 2528995 (20.09.2014)
способ нанесения защитного покрытия на внутреннюю поверхность кварцевого тигля -  патент 2527790 (10.09.2014)
монокристалл, способ его изготовления, оптический изолятор и использующий его оптический процессор -  патент 2527082 (27.08.2014)
способ получения слоев карбида кремния -  патент 2520480 (27.06.2014)
устройство и способ выращивания профилированных кристаллов тугоплавких соединений -  патент 2507320 (20.02.2014)
способ выращивания кристаллов парателлурита гранной формы и устройство для его осуществления -  патент 2507319 (20.02.2014)
способ получения кремниевых филаментов произвольного сечения (варианты) -  патент 2507318 (20.02.2014)
сцинтиллятор для детектирования нейтронов и нейтронный детектор -  патент 2494416 (27.09.2013)
способ выращивания кристалла методом киропулоса -  патент 2494176 (27.09.2013)
способ выращивания монокристаллов германия -  патент 2493297 (20.09.2013)
Наверх