способ преобразования энергии
Классы МПК: | F25B29/00 Комбинированные нагревательные и охладительные системы, например работающие одновременно или попеременно F24D3/02 с принудительной циркуляцией, например с помощью насосов H02K57/00 Электрические машины, не предусмотренные в группах 17/00 |
Автор(ы): | Зиберт Генрих Карлович (RU), Запорожец Евгений Петрович (RU) |
Патентообладатель(и): | Дочернее открытое акционерное общество "Центральное конструкторское бюро нефтеаппаратуры" (RU) |
Приоритеты: |
подача заявки:
2003-04-25 публикация патента:
10.01.2006 |
Способ преобразования энергии относится к способам преобразования энергии путем изменения параметров жидкости в тепловую энергию и может быть использован во всех отраслях промышленности, в том числе для обеспечения энергией теплоемких систем сбора, подготовки и переработки углеводородного сырья, а также производств химии и нефтехимии, в частности при нагреве водородосодержащих жидкостей, загрязненных механическими примесями, солями, гелями. Способ преобразования энергии давления водородосодержащей жидкости включает создание вихревого потока кавитирующей жидкости путем использования ее давления, с последующим приданием жидкости линейного движения. Организуют скорость вращения потока кавитирующей жидкости, при которой из положительно и отрицательно заряженных ионов диссоциированных молекул жидкости при кавитации образуют центральную и периферийную области. Под действием центробежной силы концентрируют в периферийной области массивные отрицательно заряженные ионы, а в центральной области - положительно заряженные ионы меньшей массы, обеспечивая тем самым разность электрических потенциалов между областями. Использование изобретения позволит повысить эффективность преобразования энергии давления в тепловую энергию и обеспечить получение электрической энергии. 3 з.п. ф-лы, 2 ил.
Формула изобретения
1. Способ преобразования энергии давления водородосодержащей жидкости, включающий создание вихревого потока кавитирующей жидкости путем использования ее давления с последующим приданием жидкости линейного движения, отличающийся тем, что организуют скорость вращения потока кавитирующей жидкости, при которой из положительно и отрицательно заряженных ионов диссоциированных молекул жидкости при кавитации образуют центральную и периферийную области, где под действием центробежной силы концентрируют в периферийной области массивные отрицательно заряженные ионы, а в центральной области - положительно заряженные ионы меньшей массы, обеспечивая тем самым разность электрических потенциалов между областями.
2. Способ по п.1, отличающийся тем, что увеличивают разность потенциалов между ионизированными периферийной и центральной областями кавитирующего потока жидкости путем наложения на них магнитного поля.
3. Способ по п.1 или 2, отличающийся тем, что ионы производят из диэлектрической водородосодержащей жидкости.
4. Способ по п.1 или 2, отличающийся тем, что скорость вращения потока кавитирующей жидкости устанавливают по максимальному значению напряжения и (или) электрического тока.
Описание изобретения к патенту
Изобретение относится к способам преобразования энергии путем изменения параметров жидкости, таких как давление, объем, плотность и пр., в тепловую энергию и может быть использовано во всех отраслях промышленности. Преимущественная область использования обеспечение энергией теплоемких систем сбора, подготовки и переработки углеводородного сырья, а также производств химии и нефтехимии, в частности при нагреве водородосодержащих жидкостей (воды, углеводородов и пр.), загрязненных механическими примесями, солями, гелями и т.д.
Известен способ преобразования потенциальной энергии - энергии давления потока водородосодержащей жидкости в другой вид энергии - тепловую энергию, посредством кавитации (патент РФ №2131094, МПК6 F 25 В 29/00), включающий нагрев жидкости путем изменения кавитацией ее параметров в прямоточном потоке, таких как давление, объем, плотность и пр., подачу тепловой энергии потребителю.
Недостатком этого способа является низкая эффективность. Она обуславливается небольшой концентрацией в жидкостном прямоточном потоке кавитирующих пузырьков, с помощью которых энергия давления преобразуется в тепловую энергию. Другим недостатком способа является невозможность преобразования энергии давления жидкости в другой вид энергии кроме тепловой энергии.
Известен способ преобразования энергии давления водородосодержащей жидкости, в котором частично устранены вышеуказанные недостатки (патент РФ №2153131, МПК7 F 24 Н 1/00, F 24 D 3/00, прототип). Способ включает создание вихревого потока квитирующей жидкости путем использования ее давления, с последующим приданием жидкости линейного движения. Указанный технический прием позволяет увеличить концентрацию кавитационных пузырьков в потоке, что приводит к увеличению выхода тепловой энергии.
Однако достигаемое увеличение тепловой энергии незначительно и, кроме того, данным способом невозможно получить другой вид энергии - электрической.
Предлагаемым изобретением решается задача более эффективного преобразования энергии давления жидкости в тепловую энергию и расширение функциональных возможностей путем получения кроме тепловой электрической энергии.
Для достижения указанного технического результата в способе преобразования энергии давления водородосодержащей жидкости в тепловую энергию, включающем создание вихревого потока квитирующей жидкости путем использования ее давления, с последующим приданием жидкости линейного движения, организуют скорость вращения потока кавитирующей жидкости, при которой из положительно и отрицательно заряженных ионов диссоциированных молекул жидкости при кавитации, образуют центральную и периферийную области, где под действием центробежной силы концентрируют в периферийной области массивные отрицательно заряженные ионы, диссоциированные из молекул жидкости при кавитации, а в центральной области - положительно заряженные ионы меньшей массы, обеспечивая тем самым разность электрических потенциалов между областями.
В полученном электрическом поле обеспечивают дополнительную диссоциацию молекул жидкости в потоке, так как ослабляются межмолекулярные связи жидкости. При ослабленных межмолекулярных связях уменьшаются вязкость жидкости и поверхностное натяжение. Это приводит к уменьшению энергии, затрачиваемой на кавитационный разрыв жидкости, и увеличению количества возникающих кавитационных пузырьков, что, как следствие, увеличивается выход тепловой энергии, то есть решается поставленная задача более эффективного преобразования энергии давления жидкости в тепловую энергию.
Увеличивают разность потенциалов между ионизированными периферийной и центральной областями кавитирующего потока жидкости путем наложения на них электромагнитного поля.
Ионы производят из диэлектрической водородосодержащей жидкости.
Скорость вращения потока кавитирующей жидкости устанавливают по максимальному значению напряжения и(или) электрического тока.
Отвод электрической энергии в виде электрического тока от жидкости позволяет расширить функциональные возможности этого способа, путем дальнейшего применения этой энергии.
Наложение магнитного поля на ионизированные области увеличивает разность электрических потенциалов и электрический ток, что, как следствие, повышает выход тепловой и электрической энергии.
Производство ионов из водородосодержащей жидкости, которая является диэлектриком, позволяет также повысить величину разности электрических потенциалов и, как следствие, повысить количество тепловой и электрической энергии.
Установлением оптимальной скорости вращения потока кавитирующей жидкости по максимальному значению напряжения и(или) электрического тока достигается получение наибольшей разности потенциалов, и, как следствие, позволяет повысить количество тепловой и электрической энергии.
Авторам и заявителю из существующего уровня техники не известно способов, в которых поставленная задача решалась бы подобным образом.
На фиг.1 схематично изображено устройство для реализации предлагаемого способа.
На фиг.2. - разрез А-А на фиг.1.
Устройство (фиг.1) для реализации способа преобразования энергии содержит корпус 1 с тангенциальный вход 2 для подачи жидкости, выходной патрубок 3 и электроды 4 и 5.
Способ осуществляется следующим образом.
Жидкостный поток подают в корпус 1 устройства (фиг.1, 2) через тангенциальный вход 2 для создания в корпусе вихревого течения потока жидкости, в объеме которого происходит кавитация в виде паровых пузырьков 6 (фиг.1).
Вихревому потоку кавитирующей жидкости придают вращательно-поступательное движение 7 (фиг.1), при котором величина тангенциальной скорости на порядок превышает аксиальную скорость. Причем тангенциальная скорость имеет величину, при которой за счет центробежной силы создают из ионов молекул жидкости, диссоциированных при кавитации, у электрода 5 ионизированную центральную 8 (фиг.1) и у внутренней стенки корпуса 1 ионизированную периферийную область 9. Под действием центробежной силы в периферийной области 9 концентрируют массивные ионы, имеющие один заряд, например отрицательный. В центральной области 8 концентрируют ионы меньшей массы с противоположным зарядом. Получают тем самым между этими областями разность электрических потенциалов. Используя полученную разность потенциалов, отводят с электродов 4 и 5 энергию в виде электрического тока от потока жидкости. После чего жидкости придают линейное движение и отводят через выходной патрубок 3.
Электрической энергией в вихревом потоке жидкости дополнительно диссоциируют на ионы молекулы жидкости.
На ионизированные области 8 и 9 накладывают магнитное поле 10 постоянным магнитом 11. Действием этого поля за счет электромагнитной индукции увеличивают разность электрических потенциалов и электрический ток.
Ионы могут быть произведены также из водородосодержащей жидкости, которая является диэлектриком, например из керосина, диэтиленгликоля и т.п.
Предлагаемый способ позволяет повысить эффективность преобразования энергии давления жидкости в тепловую энергию до 90% и расширить функциональные возможности путем получения кроме тепловой и электрической энергии порядка 6%.
Пример.
Поток воды под давлением 5·10 5 Па подают тангенциально (вход 2 на фиг.1, 2) с оптимальной скоростью порядка 30 м/с, и создают из него вихревое течение, в объеме которого происходит кавитация в виде паровых пузырьков 6.
Вихревому потоку кавитирующей жидкости придают вращательно-поступательное движение 7, при котором величина тангенциальной скорости (30 м/с) на порядок превышает аксиальную скорость (2 м/с). Причем тангенциальная скорость имеет величину, при которой за счет центробежной силы создают из ионов H+ и ОН- молекул воды, диссоциированных при кавитации, ионизированные центральную область 8 у электрода 5 и периферийную область 9 у внутренней стенки корпуса 1. Под действием центробежной силы в периферийной области 9 концентрируют массивные ионы ОН-, имеющие отрицательный заряд. В центральной 8 области концентрируют ионы Н+ меньшей массы с противоположным зарядом. Получают, тем самым, между этими областями разность электрических потенциалов 0.5 В. Используя полученную разность потенциалов, отводят от потока жидкости посредством электродов 4 и 5 энергию в виде электрического тока величиной 0,25 мА. После чего, жидкости придают линейное движение и отводят через патрубок отвода жидкости 3.
Электрической энергией в завихренном потоке дополнительно увеличивают диссоцию молекул жидкости на ионы Н+ и ОН-.
На ионизированные области 8 и 9 накладывают магнитное поле 10, например, постоянным магнитом 11, в которым за счет электромагнитной индукции увеличивают разность электрических потенциалов до 0,8 В и электрический ток до 0,7 мА.
Скорость вращения потока кавитирующей жидкости устанавливают по максимальному значению напряжения и (или) электрического тока, измеряемого на электродах 4 и 5.
Ионы могут быть произведены также из водородосодержащей жидкости, которая является диэлектриком, например из керосина, диэтиленгликоля и т.п.
Предлагаемый способ позволяет повысить эффективность преобразования энергии давления жидкости в тепловую энергию до 90% и расширить функциональные возможности путем получения кроме тепловой и электрической энергии порядка 6%.
Класс F25B29/00 Комбинированные нагревательные и охладительные системы, например работающие одновременно или попеременно
Класс F24D3/02 с принудительной циркуляцией, например с помощью насосов
Класс H02K57/00 Электрические машины, не предусмотренные в группах 17/00