способ выщелачивания палладия из шламов

Классы МПК:C22B11/00 Получение благородных металлов
C22B3/06 в неорганических кислых растворах
C22B3/24 адсорбцией на твердых веществах, например экстракцией твердыми смолами
Автор(ы):, , , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Комбинат "Электрохимприбор" (RU)
Приоритеты:
подача заявки:
2004-08-10
публикация патента:

Изобретение относится к области переработки оборотных продуктов, содержащих палладий в виде металлической, оксидной и металл-оксидной форм, и может быть использовано в производстве стабильных изотопов при переработке узлов камер улавливания магнитных сепараторов и в металлургии палладия при переработке руд и концентратов, содержащих окисленный и самородный палладий, и в технологии утилизации палладийсодержащих катализаторов, а также в аналитической и препаративной химии. Выщелачивание палладия из шламов, содержащих палладий в виде металлической, оксидной и металл-оксидной форм, проводят растворами азотной кислоты в присутствии нитрата аммония в присутствии слабоосновного анионита эпоксиполиаминного типа АН-31 с концентрацией азотной кислоты в выщелачивающем растворе 120-190 г/л и нитрата аммония 160-240 г/л, с последующим отделением смолы от пульпы, промывкой анионита водой от маточного раствора и десорбцией палладия из анионита. Техническим результатом является то, что существенно повышается степень выщелачивания палладия из шламов за одну стадию; получают чистые растворы палладия при его десорбции из анионита; сокращается число операций последующей технологии переработки растворов с целью получения палладия или его соединений, что в свою очередь приводит к сокращению расхода реагентов, числа единиц оборудования и сокращению рабочего времени на обслуживание передела получения палладия. 3 з.п. ф-лы, 4 табл.

Формула изобретения

1. Способ выщелачивания палладия из шламов, содержащих палладий в виде металлической, оксидной и металлооксидной форм, с использованием раствора азотной кислоты, отличающийся тем, что выщелачивание палладия осуществляют растворами азотной кислоты с добавлением нитрата аммония и слабоосновного эпоксиполиаминного типа анионита АН-31, с последующим отделением анионита от пульпы, промывкой его водой и десорбцией палладия из анионита раствором аммиака.

2. Способ по п.1, отличающийся тем, что концентрацию азотной кислоты в выщелачивающем растворе поддерживают в пределах 120-190 г/л, а нитрата аммония 160-240 г/л.

3. Способ по п.1, отличающийся тем, что соотношение шлам : раствор при выщелачивании поддерживают в пределах 1:10-1:20.

4. Способ по п.1, отличающийся тем, что анионит вводят в пульпу выщелачивания палладия в количестве не менее 1 г на 30 мг палладия, содержащегося в шламе.

Описание изобретения к патенту

Способ выщелачивания палладия из шламов относится к области переработки оборотных продуктов, содержащих палладий в виде металлической, оксидной и металл-оксидной форм, и может быть использован в производстве стабильных изотопов при переработке узлов камер улавливания магнитных сепараторов и в металлургии палладия при переработке руд и концентратов, содержащих окисленный и самородный палладий, и в технологии утилизации палладийсодержащих катализаторов, а также в аналитической и препаративной химии.

Известен способ [RU 2211251 C2 (МПК С 22 В 11/00), опубл. 27.08.2003 г.] извлечения металлов платиновой группы, в том числе и палладия в виде металлической, оксидной и металл-оксидной форм, из анодных шламов, образующихся при электрорафинировании меди. Способ включает растворение шлама в азотной кислоте, потенциостатический электролиз на пористом электроде из углеродного материала и концентрирование оставшегося металла в растворе на твердом экстрагенте с возвратом реэкстракта в цикл электролитического выделения металлов. Данный способ обеспечивает, используя азотную кислоту, высокую степень выщелачивания палладия из анодных шламов электрорафинирования меди, полноту последующего извлечения ионов металла из полученных растворов выщелачивания и высокую степень разделения палладия и примесей.

Недостатком известного способа - прототипа - является то, что метод кислотного выщелачивания не обеспечивает полного вскрытия палладия большого ряда окисленных шламов, что приводит к потере ценного продукта. Полнота вскрытия палладийсодержащих продуктов особенно важна в технологии производства стабильных изотопов, так как потери даже незначительного количества изотопообогащенного материала приводят к значительному снижению экономической эффективности технологии из-за высокой стоимости процесса разделения изотопов. Кроме того, данный метод не обеспечивает селективного выщелачивания металлов платиновой группы. Следовательно, для извлечения палладия необходимо проводить дополнительные операции подготовки и переработки полученных растворов, а это ведет к увеличению расхода реагентов и числа операций, так как любой процесс выщелачивания, как правило, связан с последующими операциями фильтрации, промывки осадка от маточного раствора. Это ведет не только к аппаратурному усложнению процесса и увеличению длительности цикла, но и разубоживанию растворов и потерям целевого компонента.

Технической задачей изобретения является устранение указанных недостатков и обеспечить существенное повышение степени выщелачивания палладия из шламов за одну стадию. Получение чистых растворов палладия при его десорбции из анионита, сокращение числа операций последующей технологии переработки растворов с целью получения палладия или его соединений приведет к сокращению расхода реагентов, числа единиц оборудования и сокращению рабочего времени на обслуживание передела получения палладия.

Технический результат достигается путем выщелачивания палладия из шламов, содержащих палладий в виде металлической, оксидной и металл-оксидной форм, растворами азотной кислоты, при этом выщелачивание палладия осуществляют растворами азотной кислоты (120-190 г/л) с добавлением нитрата аммония (160-240 г/л) в присутствии слабоосновного эпоксиполиаминного типа анионита АН-31 с последующим отделением анионита от пульпы, промывкой его водой и десорбцией палладия из анионита раствором аммиака.

Выбор концентраций реагентов в растворе и анионита для проведения сорбционного выщелачивания палладия обусловлен тем, что в этих условиях обеспечивается не только высокая степень извлечения палладия из шламов (более 99%), но и происходит отделение его от примесей железа, меди, цинка, никеля, титана, хрома, марганца, золота, серебра и т.д. При использовании сорбционного выщелачивания палладия происходит вскрытие ряда так называемых упорных шламов, из которых палладий практически не выщелачивался растворами азотной кислоты, предлагаемыми по известному способу.

Сопоставление эффективности предложенного и ранее известного способа - прототипа приведено в примерах.

Пример 1. Выщелачивание палладия проводили из шлама со средним содержанием палладия 1%. Эксперимент проводили в следующих условиях. Навеска шлама, измельченного до размера частиц менее 0,1 мм, в количестве 5 г заливалась 100 мл раствора с определенной концентрацией реагентов. Параллельно проводили аналогичный эксперимент по выщелачиванию палладия в присутствии анионита АН-31, который вносился в приготовленный раствор. Для проведения выщелачивания использовалась фракция смолы с размером зерен более 0,5 мм, что обеспечивало в последующем легкое отделение смолы от пульпы. Выщелачивание проводили при постоянном перемешивании воздухом в течение 24 часов. Данный способ перемешивания предотвращал механическое разрушение анионита. После окончания выщелачивания смолу отделяли от пульпы на сите из полипропилена с размером ячеек 0,3 мм. Смолу промывали 100 мл воды. Промывные воды объединяли с пульпой. Далее пульпу подвергали фильтрации. Осадок промывали водой до нейтрального значения рН фильтрата. Промывные воды объединяли с маточным раствором. Осадок высушивали. Фильтрат упаривали до исходного объема раствора. После этого отбирали пробу смолы для анализа на палладий. Анализу на содержание палладия подвергались высушенный шлам и фильтрат. Кроме того, для проверки полученных результатов палладий из анионита десорбировали 25% раствором аммиака, разбавленного в 2 раза дистиллированной водой. Элюаты также анализировались на содержание палладия. Результаты, полученные в результате проведения экспериментов, представлены в табл.1.

Как следует из данных, представленных в табл.1, степень выщелачивания палладия без анионита значительно ниже, чем без его добавления в пульпы. Причем палладий плохо выщелачивался концентрированной азотной кислотой и смесью соляной и азотной кислот («царской водкой»). Однако не во всех растворах происходит полное сорбционное выщелачивание. При концентрации азотной кислоты свыше 3 М наблюдается частичное разрушение анионита, что наблюдалось по убыли массы смолы. Потеря массы анионита после 24 часов контакта с 4 М раствором HNO3+3 М NH4NO3 составила 0,95 г (в пересчете на вес сухого анионита в NO 3-форме), что составло около 10% от исходной навески. В царской водке анионит практически полностью разложился.

С другой стороны, в области концентраций реагентов 2-3 М по HNO 3 и 2-3 М по NH4NO3 при добавлении анионита АН-31 в пульпу достигается практически полное выщелачивание палладия, в то время как без анионита степень выщелачивания палладия составляет лишь 65-70%.

Таблица 1
Результаты по выщелачиванию палладия из шлама изотопного производства различными растворами в присутствии анионита АН-31, в сопоставлении с выщелачиванием без анионита
Состав раствора для выщелачивания палладия Выщелачивание палладия из шлама с добавлением 10 г анионита Выщелачивание без анионита
Содержание Pd в шламе, мг Содержание Pd в растворе, мгСодержание Pd в ионите, мгСтепень сорбционного выщелачивания Pd, % (% перевода Pd в ионит/общая степень выщелачивания) Содержание Pd в шламе, мг Содержание Pd в растворе, мгСтепень выщелачивания Pd, %
0.5 M HNO 3560,0 44,044,0 87,722,322,3
1 M HNO3 0,049,4 49,450,665,7 34,334,3
3 M HNO3 42,20,157,7 57,853,647,4 47,4
*4 M HNO 331,70,5 65,365,8 46,153,053,0
1 M HNO3+1 M NH4NO3 46,00,053,6 53,669,930,1 30,1
2 M HNO 3+1 M NH4NO3 16,80,0 83,983,951,7 48,648,6
1 M HNO3+2M NH 4NO317.1 0,082,6 82,650,948,9 48,9
2 M HNO 3+2M NH4NO3 н/о0,2 99,799,935,2 64,764,7

Состав раствора для выщелачивания палладияВыщелачивание палладия из шлама с добавлением 10 г анионита Выщелачивание без анионита
Содержание Pd в шламе, мгСодержание Pd в растворе, мгСодержание Pd в ионите, мг Степень сорбционного выщелачивания Pd, % (% перевода Pd в ионит/общая степень выщелачивания)Содержание Pd в шламе, мгСодержание Pd в растворе, мг Степень выщелачивания Pd, %
3 М HNO3+2 М NH4NO 3н/о0,6 99,399,9 32,067,867,8
2 М HNO3+3 М NH4NO3 н/о0,799,3 10031,568,5 68,5
3 М HNO3 +3 М NH4NO3 н/о2,397,6 99,927,072,5 72,5
*4 М HNO 3+3 М NH4NO3 н/о3,6 96,399,8  72,872,8
15,7 М HNO3 при температуре 120°С      36,463,663,5
15,7 М HNO3 при температуре 95°С      28,272,0 72
** HCl конц+HNOконц в соотношении 3: 1 (нарекая водка)24,5 75,5смола растворилась 75,525,774,2 74,2
* частичное растворение анионита; ** полное растворение анионита

Таким образом, понижение концентрации азотной кислоты в выщелачивающих растворах ниже 2 М приводит к снижению степени сорбционного выщелачивания, а увеличение ее содержания свыше 3 М способствует интенсивному разрушению анионита.

Пример 2. 5 г измельченного палладийсодержащего шлама заливали 100 мл раствора, содержащего 130 г/л азотной кислоты и 150 г/л нитрата аммония. В пульпу вводили 15 мл смолы АН-31. В шламе количество палладия составляло 0,168 г. После выщелачивания в течение 24 часов смолу отделили от пульпы и промыли водой. Далее палладий из смолы десорбировали 12% раствором аммиака. Объем полученного элюата составил 200 мл. Элюат проанализировали на содержание примесей. Полученные данные представлены в табл.2. Параллельно проводилось выщелачивание палладия раствором 2 М HNO3 , содержащим 2 М NH4NO3. После выщелачивания осадок отделили от раствора фильтрацией и также проанализировали на содержание примесей (табл.2).

Таблица 2 Содержание палладия и примесей в растворах, полученных после выщелачивания палладия по известному способу и в элюатах после сорбционного выщелачивания шламов

Содержание основных компонентов в исходном шламе, %: Pd - 3,36; Cu - 34; Fe - 23,1; Cr - 4,9; Ti - 0,1; Zn - 1,9; Cd - 0,1; Al - 8,7

РастворыСодержание палладия и примесей, г/л
  PdCu FeCrTi ZnCdAl
Раствор концентрированной азотной кислоты (по прототипу)0,4822,36 1,311,20 0,092,910,34 0,38
Элюаты после десорбции палладия из анионита АН-310,835 0,0030,002 0,003не обнар.не обнар.не обнар.не обнар.

Полученные данные показали, что при высокой степени выщелачивания палладия из шлама 99,4% (по прототипу 57%) элюаты, полученные после десорбции палладия из анионита, содержат незначительное количество примесей. Металл, который был получен из растворов восстановлением гидразином, содержал примесей менее 0,1%.

Пример 3. Для определения необходимого количества смолы сорбционного выщелачивания палладия в пульпы вводились различные навески анионита АН-31. Исходная пульпа готовилась как и в предыдущем примере. Навеска шлама в количестве 5 г заливалась 100 мл раствора с концентрацией азотной кислоты и нитрата аммония по 2 М каждого реагента. Затем в пульпы добавляли анионит АН-31 в количестве 1, 3, 5, 8, 10 г. После выщелачивания смола отделялась от пульпы, и в ней определяли содержание палладия. Как описано в примере 1, анализировались растворы и шлам. По полученным результатам определяли степень выщелачивания палладия (табл.3). Из приведенных в табл.3 данных следует, что при введении 1 г анионита на 30 мг палладия степень выщелачивания палладия достигает более 98%.

Таблица 3
Степень выщелачивания палладия из шлама в зависимости от количества введенного в пульпу анионита АН-31
Количество анионита АН-31 в пульпе, гСодержание Pd в шламе, мгСодержание Pd в растворе, мгСодержание Pd в анионите, мг Степень перехода палладия в анионит, %Общая степень выщелачивания палладия, %
160,244,1 63,337,763,9
311,2 4,9152,090,5 93,4
5 1,51,1165,5 98,599,2
80,8Не обн. 16799,499,4
10не обн. Не обн.16799,4 99,4

Пример 4. Для установления оптимального соотношения Ж:Т в пульпах была проведена серия экспериментов, в которых на 5 г шлама и 5 г ионита были взяты различные объемы выщелачиваемого раствора (25 мл, 50 мл, 75 мл, 100 мл) с концентрацией реагентов, указанной в примере 3. Результаты опытов сведены в табл.4.

Таблица 4
Степень выщелачивания палладия в зависимости от соотношения Ж:Т
Объем раствора на выщелачивание, млСодержание Pd в шламе, мг Содержание Pd в растворе, мгСодержание Pd в анионите, мгСтепень перехода палладия в анионит, %Общая степень выщелачивания палладия, %
25 12,3не обн.155,9 92,892,8
502,1 не обн.165,798,6 98,6
75 1,31,1165,5 98,599,2
1000,91,1 166,39999,6
1500,8 1,1166,399 99,7

Из данного примера следует, что минимальное соотношение Ж:Т должно быть 5:1. Дальнейшее уменьшение соотношения жидкой и твердой фазы приводит к снижению степени выщелачивания палладия. Кроме того, при низких значениях соотношения Ж:Т осложняется процесс отделения смолы от пульпы.

Увеличение соотношения Ж:Т свыше 20 нецелесообразно, так как ведет к дополнительному расходу реагентов. Отсюда следует, что оптимальное соотношение Ж:Т при выщелачивании, которое обеспечивает высокую степень извлечения палладия из шламов и не приводит к избыточному расходу реагентов, лежит в пределах 1:10÷1:20.

Таким образом, использование предлагаемого способа позволяет:

а) существенно повысить степень выщелачивание палладия из шламов за одну стадию;

б) получать чистые растворы палладия при его десорбции из анионита;

в) сократить число операций последующей технологии переработки растворов с целью получения палладия или его соединений, что в свою очередь приводит к сокращению расхода реагентов, числа единиц оборудования и сокращению рабочего времени на обслуживание передела получения палладия.

Класс C22B11/00 Получение благородных металлов

способ переработки сульфидного сырья, содержащего драгоценные металлы -  патент 2528300 (10.09.2014)
способ разделения платины (ii, iv), родия (iii) и никеля (ii) в хлоридных растворах -  патент 2527830 (10.09.2014)
устройство для выщелачивания -  патент 2526350 (20.08.2014)
способ переработки золотосодержащих неорганических материалов, включая переработку ювелирного лома и рафинирование золота -  патент 2525959 (20.08.2014)
способ извлечения тонкодисперсного золота из глинистых отложений -  патент 2525193 (10.08.2014)
способ извлечения рения и платиновых металлов из отработанных катализаторов на носителях из оксида алюминия -  патент 2525022 (10.08.2014)
способ извлечения ионов серебра из низкоконцентрированных растворов азотнокислого серебра -  патент 2524038 (27.07.2014)
способ извлечения серебра из щелочных цианистых растворов -  патент 2523062 (20.07.2014)
способ извлечения золота из руд и концентратов -  патент 2522921 (20.07.2014)
способ переработки электронного лома -  патент 2521766 (10.07.2014)

Класс C22B3/06 в неорганических кислых растворах

способ извлечения редкоземельных металлов и получения строительного гипса из фосфогипса полугидрата -  патент 2528576 (20.09.2014)
способ извлечения редкоземельных металлов и получения строительного гипса из фосфогипса полугидрата -  патент 2528573 (20.09.2014)
способ вскрытия перовскитовых концентратов -  патент 2525025 (10.08.2014)
способ переработки эвдиалитового концентрата -  патент 2522074 (10.07.2014)
способ переработки магнезитодоломитового сырья -  патент 2521543 (27.06.2014)
способ извлечения редкоземельных элементов из твердых материалов, содержащих редкоземельные элементы -  патент 2519692 (20.06.2014)
способ переработки кремнийсодержащего химического концентрата природного урана -  патент 2517633 (27.05.2014)
способ получения наночастиц золота из сырья, содержащего железо и цветные металлы -  патент 2516153 (20.05.2014)
способ извлечения металлов из силикатных шлаков -  патент 2515735 (20.05.2014)
способ подготовки урансодержащего сырья к экстракционной переработке -  патент 2514557 (27.04.2014)

Класс C22B3/24 адсорбцией на твердых веществах, например экстракцией твердыми смолами

способ разделения платины (ii, iv), родия (iii) и никеля (ii) в хлоридных растворах -  патент 2527830 (10.09.2014)
способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты -  патент 2525947 (20.08.2014)
способ извлечения тонкодисперсного золота из глинистых отложений -  патент 2525193 (10.08.2014)
способ извлечения ионов серебра из низкоконцентрированных растворов азотнокислого серебра -  патент 2524038 (27.07.2014)
способ извлечения рения из урансодержащих растворов -  патент 2523892 (27.07.2014)
способ переработки фосфогипса для производства концентрата редкоземельных металлов и гипса -  патент 2520877 (27.06.2014)
способ извлечения урана из маточных растворов -  патент 2516025 (20.05.2014)
способ получения пентаоксида ванадия из ванадийсодержащего шлака. -  патент 2515154 (10.05.2014)
сорбционное извлечение ионов железа из кислых хлоридных растворов -  патент 2514244 (27.04.2014)
сорбционное извлечение ионов кобальта из кислых хлоридных растворов -  патент 2514242 (27.04.2014)
Наверх