способ измерения изменений азимута плоскости поляризации оптического излучения
Классы МПК: | G01N21/21 свойства, влияющие на поляризацию G01J4/04 поляриметры с использованием электрических детекторов |
Автор(ы): | Голубев Сергей Владимирович (RU), Дунец Владимир Петрович (RU), Козирацкий Александр Юрьевич (RU), Козирацкий Юрий Леонтьевич (RU), Кулешов Павел Евгеньевич (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования Военный институт радиоэлектроники (RU) |
Приоритеты: |
подача заявки:
2004-12-08 публикация патента:
10.05.2006 |
Изобретение относится к области технической физики и касается способов измерения азимута плоскости поляризации оптического излучения, вызываемых изменением поляризационных свойств поляризующих элементов либо воздействием на азимут поляризации оптически активным веществом. Сущность изобретения заключается в делении монохроматического линейно-поляризованного излучения на два равных потока, один из которых пропускают через измерительную кювету при наличии и отсутствии оптически активного вещества, смешивании его со вторым потоком, детектировании суммарного излучения, определении изменения азимута плоскости поляризации как отношения амплитуд переменных составляющих фототоков. Техническим результатом является сокращение времени и повышение точности измерений. 1 ил.
Формула изобретения
Способ измерения изменений азимута плоскости поляризации оптического излучения, заключающийся в получении монохроматического линейно поляризованного излучения и пропускании его через измерительную кювету с оптически активным веществом, отличающийся тем, что монохроматическое линейно поляризованное излучение делят на два равных потока, один из которых пропускают через измерительную кювету в отсутствие оптически активного вещества, смешивают потоки, выделяют переменную составляющую фототока, значение амплитуды которой запоминают, затем помещают в измерительную кювету оптически активное вещество, повторно измеряют переменную составляющую фототока и определяют изменение азимута плоскости поляризации как отношение амплитуд переменных составляющих фототока.
Описание изобретения к патенту
Изобретение относится к области технической физики и касается способов измерения азимута плоскости поляризации оптического излучения, вызываемых изменением поляризационных свойств поляризующих элементов либо воздействием на азимут поляризации оптически активным веществом.
Известен способ измерения поляризации (см., например, Т.И.Трофимова. Оптика и атомная физика - М.: Высшая школа, 1999, стр.59), основанный на вращении поляризационного анализатора, которое приводит к изменению интенсивности, определяющей направление плоскости поляризации. Недостатком способа является низкая точность.
Известен способ (см., например, Л.А.Тумерман. Авторское свидетельство СССР №374972, 6 G 01 N 21/40, 1973) измерения величины оптической активности веществ, основанный на делении зондирующего монохроматического линейно-поляризованного с вращающееся поляризацией излучения на два луча, один из которых пропускают через поляризатор и используют в качестве опорного, а другой также пропускают через поляризатор и измеряют разность фаз между переменными составляющими интенсивности рабочего и опорного пучков, по которой судят о величине оптической активности исследуемого вещества. Недостатками способа являются неравномерное вращение плоскости поляризации зондирующего излучения и наличие дополнительного оптического и фотоэлектронного каналов, что приводит снижению точности измерения.
Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ (см., например, А.С.Аксенов, А.К.Фролов. Авторское свидетельство СССР №744294, 6 G 01 N 21/40, 1976) измерения изменений азимута плоскости поляризации светового излучения, основанный на последовательной, как минимум однократной поляризации и измерении взаимного смещения сопряженных временных интервалов, образующихся между моментами максимального гашения излучения. Недостатком способа является непостоянство временного интервала и скорости вращения анализатора поляризации, что приводит к снижению точности и увеличению длительности измерения.
Техническим результатом, на достижение которого направленно предлагаемое изобретение, является сокращение времени и повышение точности измерения изменения азимута плоскости поляризации оптического излучения.
Технический результат достигается тем, что в известном способе измерения изменений азимута плоскости поляризации, заключающемся в последовательной, как минимум однократной поляризации и измерении взаимного смещения сопряженных временных интервалов, образующихся между моментами максимального гашения излучения, монохроматическое линейно-поляризованное излучение делят на два равных потока, один из которых пропускают через измерительную кювету при наличии и отсутствии оптически активного вещества, смешивают его со вторым потоком, детектируют суммарное излучение, определяют изменение азимута плоскости поляризации как отношение амплитуд переменных составляющих фототоков.
Как известно (см., например, В.В.Протопопов, Н.Д.Устинов. Лазерное гетеродирование. - М.: Наука, 1985, с.5) в основе гетеродинного детектирования оптических излучений лежит явление интерференции двух волн на чувствительной площадке фотодетектора. Взаимодействием суммарного поля с материалом чувствительной площадки фотодетектора является выходной ток, который определяется из выражения
где ic1, ic2 - постоянные составляющие фототока, вызванные действием полей оптических излучений;
- разностная частота смешиваемых оптических излучений;
, - модули единичных векторов поляризации оптических излучений;
П - угол между векторами поляризации смешиваемых оптических излучений;
- разность фаз смешиваемых оптических полей.
Два первых слагаемых (1) представляют собой не зависящие от времени постоянные составляющие фототока, вызванные полями смешиваемых излучений.
Третье описывает результат интерференции полей, то есть определяет переменную составляющую фототока изменяющуюся с круговой частотой ( = с1- с2) и зависящую от поляризационной согласованности смешиваемых полей.
Переменная и постоянная составляющие фототока могут быть легко отделены спектральной фильтрацией, а при =0 выбором порогового значения фототока.
При смешивании волн оптических излучений, если они однородны и согласованы по фазе, то амплитуда сигнала, образованная в результате биений полей, будет определяться степенью поляризационного согласования указанных волн. Таким образом, используя интерференционную зависимость сигнала образованного в результате фотосмешения от угла их поляризационного рассогласования, можно осуществить с высокой точностью мгновенное измерение изменений ориентации плоскости поляризации оптического излучения.
Из выражения (1) видно, что степень поляризационной согласованности смешиваемых излучений может быть определена полезной (интерференционной) переменной составляющей фототока, содержащей множитель cos П.
Для измерения изменений азимута плоскости поляризации оптического излучения произведем разделение исследуемого излучение на два равных по интенсивности и поляризации потока и смешаем их. Далее интерференционный поток поступает на фотодетектор. В результате полный ток фотодетектора имеет вид
где iП=2iccos П.
При поляризационной согласованности ( П=0) смешиваемых волн значение фототока максимально. Произведя фильтрацию по разностной частоте или выбор порогового значения получим переменную составляющую (iП).
Помещение на пути одного из смешиваемых потоков оптически активного вещества вызовет поворот плоскости поляризации излучения на угол п, что приведет к уменьшению значения амплитуды переменной составляющей. Отношение величин амплитуд переменных составляющих при участии оптически активного вещества и без него позволяет получить значение угла изменения азимута плоскости поляризации (формула (3)).
где iП1=2iccos п и iП2=2iс.
На чертеже представлена блок-схема устройства, с помощью которого может быть реализован предлагаемый способ.
Блок-схема устройства содержит полупрозрачное зеркало 1, кювету 2, отражающие зеркала 3, смесительную пластину 4, фотодетектор 5, фильтр (или пороговое устройство) 6, запоминающее устройство значения амплитуды переменной составляющей 7, блок определения 8.
Оптическое линейно-поляризованное излучение делится полупрозрачным зеркалом 1 на два равных по интенсивности и поляризации потока, которые смешиваются с помощью смесительной пластины в условиях их поляризационного согласования ( П=0), при этом один поток проходит через измерительную кювету 3, интерференционный поток детектируется фотодетектором 5, выделяется фильтром или порогом 6 переменная составляющая фототока, значение амплитуды переменной составляющей фиксируется запоминающим устройством 7, в кювету помещается оптически активное вещество и повторно производится измерение переменной составляющей, определяется угол поворота плоскости поляризации блоком определения П 8, как отношение амплитуд переменных составляющих.
Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ измерения изменений азимута плоскости поляризации излучения, основанный на делении монохроматического линейно-поляризованного излучения на два равных потока, один из которых пропускают через измерительную кювету при наличии и отсутствии оптически активного вещества, смешивании его со вторым потоком, детектировании суммарного излучения, определении изменения азимута плоскости поляризации, как отношение амплитуд переменных составляющих фототоков.
Предлагаемое техническое решение имеет изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленное способ позволяет повысить скорость и точность определения изменения азимута плоскости поляризации оптического излучения.
Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы типовые оптические и радиотехнические узлы и устройства.
Класс G01N21/21 свойства, влияющие на поляризацию
Класс G01J4/04 поляриметры с использованием электрических детекторов