способ термической обработки рельсов

Классы МПК:C21D9/04 рельсов
Автор(ы):, , , , , , , ,
Патентообладатель(и):Открытое акционерное общество "Новокузнецкий металлургический комбинат" (RU)
Приоритеты:
подача заявки:
2005-01-11
публикация патента:

Изобретение относится к области черной металлургии, в частности к способам термической обработки железнодорожных рельсов. Техническим результатом изобретения является повышение комплекса механических свойств, получение максимальной твердости (НВ388) на глубине до 22 мм от поверхности катания головки, а также увеличение эксплуатационной стойкости рельсов за счет получения достаточной глубины закаленного слоя с однородной сорбитной структурой. Для достижения технического результата рельс с прокатного нагрева подстуживают до температуры 820-870°С и охлаждают в двух средах: первоначально сжатым воздухом с поверхности головки в течение 20-30 сек при расходе воздуха 3000-4000 м3/ч, температуре воздуха 10-25°С и давлении 0,55 МПа; затем производят охлаждение головки водо-воздушной смесью при расходе воды 25-30 л/мин, температуре воды 10-30°С и давлении 0,3-0,4 МПа, одновременно с охлаждением головки рельса производится охлаждение подошвы водо-воздушной смесью при температуре воды 10-30°С, расходе 6-7 л/мин и давлении 0,08-0,09 МПа. 2 табл.

Формула изобретения

Способ термической обработки рельсов, включающий непрерывное охлаждение головки с последующим регулируемым охлаждением элементов профиля рельса, отличающийся тем, что рельс с прокатного нагрева подстуживают до температуры 820-870°С и охлаждают в двух средах: первоначально сжатым воздухом с поверхности головки в течение 20-30 с при расходе воздуха 3000-4000 м3/ч, при температуре воздуха 10-25°С и давлении 0,55 МПа, затем производят охлаждение головки водовоздушной смесью при расходе воды 25-30 л/мин, температуре воды 10-30°С и давлении 0,3-0,4 МПа, одновременно с охлаждением головки рельса производится охлаждение подошвы водовоздушной смесью при температуре воды 10-30°С, расходе 6-7 л/мин и давлении 0,08-0,09 МПа.

Описание изобретения к патенту

Изобретение относится к черной металлургии, в частности к способам термической обработки железнодорожных рельсов.

Известен способ закалки рельсов с прокатного нагрева путем дифференцированного охлаждения элементов профиля сжатым воздухом [1]. Существенными недостатками этого способа являются ограниченная возможность получения максимальных значений твердости (НВ388) на рельсах из стали с содержанием углерода 0,71-0,82%, недостаточная глубина закаленного слоя в головке рельса.

Известны также способы термической обработки рельсов, включающие нагрев под закалку и поверхностное охлаждение головки рельса струями воды и водовоздушной смесью [2, 3]. Недостатками данных способов являются неоднородность структуры по глубине закаленного слоя, образование недопустимых структур (верхний бейнит, мартенсит) в приповерхностном слое головки, недостаточная прямолинейность рельсов из-за неравномерного охлаждения всех элементов профиля рельса, необходимость в холодной правке.

Известен также способ термической обработки рельсов [3], прототип, при котором охлаждение головки производят непрерывно до 100-400°С при увеличении расхода охладителя от 1 до 50 объемов в секунду, после которого производят регулируемое охлаждение всех элементов профиля. Существенным недостатком данного способа является неоднородность микроструктуры с поверхности головки рельса, возможность образования в поверхностном слое головки недопустимых структур (верхний бейнит, мартенсит), невозможность получения максимальных значений твердости (НВ388) на расстоянии 22 мм от поверхности катания головки.

Желаемыми техническими результатами изобретения являются: повышение комплекса механических свойств, получение максимальной твердости (НВ388) на глубине до 22 мм от поверхности катания головки, а также увеличение эксплуатационной стойкости рельсов за счет получения достаточной глубины закаленного слоя с однородной сорбитной структурой.

Для этого рельс с прокатного нагрева подстуживают до температуры 820-870°С, затем производят охлаждение в двух средах: первоначально сжатым воздухом с поверхности головки в течение 20-30 сек при расходе воздуха 3000-4000 м3/ч, температуре воздуха 10-25°С и давлении 0,55 МПа; затем производят охлаждение головки водовоздушной смесью при расходе воды 25-30 л/мин, температуре воды 10-30°С и давлении 0,3-0,4 МПа, одновременно с охлаждением головки рельса производится охлаждение подошвы водо-воздушной смесью, при температуре воды 10-30°С, расходе 6-7 л/мин и давлении 0,08-0,09 МПа.

Охлаждение головки рельса в двух средах позволяет в первоначальный момент времени за счет подачи сжатого воздуха в течение 20-30 сек охладить поверхность головки до температуры 600-550°С, обеспечив образование сорбита с пластинчатой формой карбидной фазы, благодаря этому полностью исключается возможность образования в приповерхностных слоях головки недопустимых структур верхнего бейнита и мартенсита. Причем увеличение времени охлаждения сжатым воздухом (более 30 сек) приводит к резкому снижению твердости на поверхности катания, а при уменьшении времени охлаждения (менее 20 сек) возрастает вероятность образования мартенсита и бейнита. Последующее применение водовоздушной смеси с постоянным расходом воды способствует увеличению глубины и твердости закаленного слоя головки до требуемых пределов. Охлаждение подошвы рельса водовоздушной смесью производится для обеспечения его прямолинейности. При этом содержание воды в смеси, подаваемой на подошву, должно быть в четыре раза меньше, чем на головку.

Заявляемые пределы подобраны экспериментальным путем исходя из требований к микроструктуре, прямолинейности, механическим свойствам и твердости углеродистой стали.

Способ был реализован в полупромышленных условиях на полнопрофильных пробах длиной 1500 мм, отобранных от рельса типа Р65, изготовленного из стали марки НЭ76Ф. Нагретые до температуры 820-870°С, пробы закаливали в охлаждающем устройстве, представляющем собой две секции, состоящие из восьми ресиверов, два из которых расположены над поверхностью катания, четыре - со стороны боковых поверхностей головки, два - под подошвой рельсовой пробы. Ресиверы имеют решетки, образованные рядами отверстий диаметром 1,5 мм и расположенные на фиксированном расстоянии (50 мм) от поверхности рельса. После термообработки исследовали микроструктуру закаленного металла, а также определяли механические свойства и твердость.

Технологические параметры термообработки рельсовых проб приведены в таблице 1. Результаты механических испытаний и исследований микроструктуры в таблице 2.

Предлагаемый способ термической обработки позволил повысить комплекс механических свойств, твердость стали, а также увеличить эксплуатационную стойкость рельсов за счет получения однородной сорбитной структуры и увеличения глубины закаленного слоя.

Источники информации

1. В.В.Поляков, А.В.Великанов. Основы технологии производства железнодорожных рельсов - М.: Металлургия, 1990. 416 с.

2. А.С. СССР № 518970, кл C 21 D 9/04.

3. А.С. СССР № 350843, кл C 21 D 9/04.

4. А.С. СССР № 522751, кл C 21 D 9/04.

Таблица 1.

Технологические параметры термообработки рельсовой пробы на охлаждающей установке, состоящей из двух секций (длина 1500 мм)
Температура рельса, °С Режим термической обработки головки рельсаРежим охлаждения подошвы
I этап II этап
Давление сжатого воздуха, МПаРасход сжатого воздуха, м 3Температура воздуха, °С Время охлаждения, секДавление воды, МПаРасход воды, л/мин Температура воды, °СВремя охлаждения, минДавление воды, МПа Расход воды, л/мин
1 8400,151000 10600,10 8145 0,031
2 8200,25 10002040 0,151217 50,042
3860 0,35200010 300,2016 2640,05 3
4850 0,452500 14300,25 19144 0,064
5 8300,50 30001820 0,302320 30,075
6820 0,50300010 300,3525 3030,08 6
7870 0,554000 25200,40 30102 0,097
8 8700,55 40001215 0,403018 20,097

Таблица 2.

Результаты физико-механических испытаний и исследований микроструктуры
Микроструктура закаленного слоя головки рельса Глубина закаленного слоя (сорбита закалки), мм Микроструктура шейки и подошвы рельса Твердость по сечению рельса, НВспособ термической обработки рельсов, патент № 2280700 т,способ термической обработки рельсов, патент № 2280700 в,способ термической обработки рельсов, патент № 2280700 5,способ термической обработки рельсов, патент № 2280700 ,KCU, Дж/см 2
ПКГ 1022шейка подошваН/мм2 %+20°С -60°С
1 Сорбит закалки5-6 Перлит341 331321293 293,2837101160 1544 2712
2 Сорбит закалки7-8 Перлит341 341331283 293,2837401180 1337 2814
3 Сорбит закалки9-15 Перлит375 341331302 293,3028401190 1237 3016
4 Сорбит закалки18-23 Перлит375 352341302 302,3029001280 1235 3022
5 Сорбит закалки24-26 Перлит388 363341311 311,3029101290 1136 3324
6 Сорбит закалки25-28 Перлит388 375363321 311,3219601320 1235 3025
7 Сорбит закалки27-30 Перлит388 388375331 311,3419901340 1234 3224
8 Сорбит закалки с участками мартенсита 27-30Перлит388 388375 331311,3411040 136010 322516
прототипСорбит закалки 25  363-388352-363321-331            

Класс C21D9/04 рельсов

способ термической обработки сварных стыков рельсов -  патент 2524526 (27.07.2014)
стальной рельс и способ его изготовления -  патент 2519180 (10.06.2014)
способ термической обработки рельсов -  патент 2487178 (10.07.2013)
способ и установка термической обработки рельсов -  патент 2487177 (10.07.2013)
способ охлаждения зоны сварки рельса, устройство для охлаждения зоны сварки рельса и сварное соединение рельса -  патент 2485187 (20.06.2013)
способ и установка термической обработки рельсов -  патент 2484148 (10.06.2013)
устройство и способ охлаждения зоны сварки рельса -  патент 2470080 (20.12.2012)
способ и устройство термической обработки рельсов -  патент 2456352 (20.07.2012)
промежуточная деталь для соединения фасонного тела из марганцовистой стали с углеродистой сталью, а также способ соединения отливок из марганцовистой аустенитной стали со стандартными рельсами -  патент 2450063 (10.05.2012)
способ производства рельсов -  патент 2440427 (20.01.2012)
Наверх