способ гидрогенизационной переработки нефтяного сырья

Классы МПК:C10G47/02 отличающийся используемыми катализаторами
C10G65/12 включая ступени крекинга и другие ступени гидрообработки
Автор(ы):, , , , , , ,
Патентообладатель(и):Открытое акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (RU),
Открытое акционерное общество "Научно-исследовательский и проектный институт нефтеперерабатывающей и нефтехимической промышленности" (RU)
Приоритеты:
подача заявки:
2005-08-24
публикация патента:

Изобретение относится к области нефтепереработки, в частности к способу гидрогенизационной переработки нефтяного сырья. Сущность: смесь вакуумного дистиллата и дистиллатной фракции вторичных деструктивных процессов подвергают гидрогенизационной переработке при повышенных температуре и давлении в присутствии катализатора. При этом используют фракцию вторичных деструктивных процессов с содержанием серы до 1 мас.% в количестве 2-25 мас.% на сырье. В качестве сырья используют вакуумный дистиллат с концом кипения до 560°С, в качестве дистиллатной фракции вторичных деструктивных процессов используют газойлевые фракции каталитического крекинга, висбрекинга, замедленного коксования. Процесс проводят при давлении 4-10 МПа, температуре 340-415°С, объемной скорости подачи сырья 0,5-2,0 ч-1. Технический результат: повышение степени очистки остатка, возможность вовлечения в процесс тяжелого вакуумного дистиллата. 2 н. и 1 з.п. ф-лы.

Формула изобретения

1. Способ гидрогенизационной переработки нефтяного сырья, представляющего собой смесь вакуумного дистиллата и дистиллатной фракции вторичных деструктивных процессов, при повышенных температуре и давлении в присутствии катализатора, отличающийся тем, что используют фракцию дистиллата вторичных деструктивных процессов с содержанием серы до 1 мас.% в количестве 2-25 мас.% на сырье.

2. Способ по п.1, отличающийся тем, что в качестве сырья используют вакуумный дистиллат с концом кипения до 560°С, а в качестве дистиллатной фракции вторичных деструктивных процессов используют газойлевые фракции каталитического крекинга, висбрекинга, замедленного коксования.

3. Способ по пп.1 и 2, отличающийся тем, что гидрогенизационную переработку проводят при давлении 4-10 МПа, температуре 340-415°С, объемной скорости подачи сырья 0,5-2,0 ч-1.

Описание изобретения к патенту

Изобретение относится к области нефтепереработки, конкретно к способу гидрогенизационной переработки нефтяного сырья.

Известен способ легкого гидрокрекинга сернистых вакуумных дистиллатов, позволяющий получить 35-40% дизельного топлива и 2-4% бензинового дистиллата. Процесс гидрокрекинга осуществляют в присутствии катализатора при давлении 5,5 МПа, объемной скорости подачи сырья 0,59-0,68 ч-1, температуре 385-420°С и кратности циркуляции водородсодержащего газа 1000-1300 нм 33. Общая степень конверсии составляет 40-45 мас.% на сырье, при этом остается непревращенный остаток (55-60 мас.%), который из-за пониженного содержания в нем серы (порядка 0,1 мас.%) может использоваться как облагороженное сырье для каталитического крекинга.

Полученный дизельный дистиллат, содержащий 0,04-0,05 мас.% серы, может использоваться непосредственно как товарное дизельное топливо или служить компонентом последнего. ("Нефтепереработка и нефтехимия", 1999, №11, стр.28.)

Недостатком способа является сложная каталитическая система, предполагающая использование трехстадийной загрузки катализаторов (последовательно гидроочистки, гидрирования и гидрокрекинга), а также невозможность переработки вакуумных дистиллятов с концом кипения, превышающим 520-525°С, что затрудняет вовлечение в процесс более тяжелых вакуумных дистиллатов (с концом кипения до 560°С).

Наиболее близким к заявляемому является способ гидрогенизационной переработки смеси вакуумного дистиллата (фракции 350-500°С) и широкой газойлевой фракции замедленного коксования гудрона в количестве 35 мас.% на сырье с содержанием серы 1,6 мас.%.

Гидрогенизационную переработку проводят в две стадии: на первой стадии при температуре 390°С и объемной скорости подачи сырья 2,5 ч-1, на второй стадии - при температуре 400°С и объемной скорости подачи сырья 2,5 ч-1, при соотношении водородсодержащий газ/сырье - 1000 нм33 при давлении 5 МПа в присутствии никель-молибденового катализатора на оксиде алюминия (I стадия) и никель-молибденового катализатора на цеолитсодержащем катализаторе (II стадия). Из гидрогенизата выделяют 63 мас.% дизельной фракции 150-370°С с содержанием серы 0,04 мас.% компонента дизельного топлива, и 30 мас.% остатка с содержанием серы 0,15 мас.%, который может быть использован в качестве котельного топлива. (Патент РФ №2205200, 2003 г., пример 3.)

Недостатком известного способа является невозможность переработки вакуумных дистиллатов с концом кипения выше 500°С, что существенно сокращает вовлечение в переработку утяжеленных вакуумных дистиллатов (с концом кипения до 560°С). К числу недостатков следует отнести также недостаточно глубокую степень очистки остатка от серы (0,15 мас.%), что приводит к тому, что его можно использовать в качестве компонента котельного топлива, и только после дополнительной подготовки - в качестве сырья каталитического крекинга.

Задачей предлагаемого изобретения является разработка способа гидрогенизационной переработки нефтяного сырья, позволяющего вовлечь в переработку тяжелые вакуумные дистиллаты с концом кипения до 560°С, получая при этом малосернистые дизельные дистиллаты, и одновременно улучшить качество непревращенного остатка, который можно использовать в качестве сырья каталитического крекинга без дополнительной подготовки.

Для решения поставленной задачи предлагается способ гидрогенизационной переработки нефтяного сырья, представляющего собой смесь вакуумного дистиллата и дистиллатной фракции вторичных деструктивных процессов, при повышенных температуре и давлении в присутствии катализатора, который отличается тем, что используют дистиллатную фракцию вторичных деструктивных процессов с содержанием серы до 1 мас.% в количестве 2-25 мас.% на сырье.

Причем в качестве сырья используют вакуумный дистиллат с концом кипения до 560°С, а в качестве дистиллатной фракции вторичных деструктивных процессов используют газойлевые фракции каталитического крекинга, висбрекинга, замедленного коксования, выкипающие внутри интервала температур 180-530°С.

Гидрогенизационную переработку проводят при давлении 4-10 МПа, температуре 340-415°С, объемной скорости подачи сырья 0,5-2,0 ч-1.

Следует отметить, что дистиллатная фракция вторичных деструктивных процессов с содержанием серы до 1 мас.% является "донором водорода", добавление которой к вакуумному дистиллату с концом кипения до 560°С способствует появлению в реакционной системе атомарного водорода. Это интенсифицирует требуемые каталитические реакции, позволяет достигнуть углубления реакций сероочистки и деструкции исходного сырья без повышения давления свыше 10 МПа. При содержании серы выше 1 мас.% в дистиллатной фракции вторичных деструктивных процессов атомарный водород будет участвовать в связывании "избыточной" серы этой фракции, не участвуя в реакциях нужного направления.

Использование дистиллатной фракции вторичных деструктивных процессов в качестве "донора водорода" в количестве менее 2 мас.% недостаточно для интенсификации процесса гидрогенизационной переработки утяжеленного вакуумного дистиллата, а в количестве более 25 мас.% - экономически нецелесообразно.

Процесс гидрогенизационной переработки осуществляют в присутствии катализаторов (система, состоящая из одного или двух последовательно расположенных катализаторов).

Заявляемый способ позволяет получить дизельный дистиллат с выходом 10-45 мас.% с содержанием серы 0,01-0,02 мас.%, который можно использовать как компонент дизельного топлива, а также облагороженный остаток с выходом 47-80 мас.% с содержанием серы 0,02-0,06 мас.%, который является высококачественным сырьем для процесса каталитического крекинга.

Ниже приведены конкретные примеры осуществления заявляемого способа.

Пример 1

Смесь вакуумного дистиллата западносибирской нефти (фракция 350-560°С) в количестве 75 мас.%, характеризующегося следующими показателями:

плотность при 20°С - 926 кг/м3;

содержание серы - 1,7 мас.%;

содержание азота - 0,2 мас.%;

содержание ванадия - 0,55 г/т;

содержание никеля - 0,26 г/т;

до 360°С выкипает - 3 об.%

и газойлевой фракции каталитического крекинга в количестве 25 мас.%, характеризующейся следующими показателями:

пределы кипения - 200-350°С;

плотность при 20°С - 890 кг/м3;

содержание серы - 0,3 мас.%

подвергают гидрогенизационной переработке при давлении 10 МПа, температуре 390°С, объемной скорости подачи сырья 2,0 ч-1, соотношении водородсодержащий газ/сырье 1500 об./об. в присутствии цеолитсодержащего алюмо-никель-молибденового катализатора.

В результате получают 4 мас.% бензинового дистиллата, 45 мас.% дизельного дистиллата (фракция 180-350°С) с содержанием серы 0,01 мас.%, который может служить компонентом товарного дизельного топлива, и 47 мас.% облагороженного остатка, выкипающего выше 350°С и характеризующегося содержанием серы 0,02 мас.%, который является высококачественным сырьем для процесса каталитического крекинга (плотность при 20°С - 920 кг/м3, содержание азота - менее 0,05 мас.%, содержание ванадия - 0,10 г/т, содержание никеля - 0,10 г/т).

Пример 2

Смесь вакуумного дистиллата сернистых татарских нефтей (фракция 350-540°С) в количестве 90 мас.%, характеризующегося следующими показателями:

плотность при 20°С - 924 кг/м3;

содержание серы - 2,4 мас.%;

содержание азота - 0,3 мас.%;

содержание ванадия - 0,7 г/т;

содержание никеля - 0,4 г/т;

до 360°С выкипает - 4 об.%

и газойлевой фракции висбкрекинга в количестве 10 мас.%, характеризующейся следующими показателями:

пределы кипения - 165-400°С;

плотность при 20°С - 870 кг/м3;

содержание серы - 1,0 мас.%

подвергают гидрогенизационной переработке при давлении 6 МПа в две стадии: на первой стадии при температуре 340°С и объемной скорости подачи сырья - 1,5 ч-1; на второй стадии при температуре 400°С и объемной скорости подачи сырья - 1,5 ч-1 (соотношение водородсодержащий газ/сырье - 1000 об./об.) в присутствии алюмо-кобальт-молибденового катализатора (I стадия) и цеолитсодержащего алюмо-никель-молибденового катализатора (II стадия).

В результате получают 3 мас.% бензинового дистиллата, 10 мас.% дизельного дистиллата (фракция 160-360°С) с содержанием серы 0,02 мас.%, который может служить компонентом товарного дизельного топлива, и 80 мас.% облагороженного остатка, выкипающего выше 360°С и характеризующегося содержанием серы 0,06 мас.%, который является высококачественным сырьем для процесса каталитического крекинга (плотность при 20°С - 918 кг/м3, содержание азота - 0,10 мас.%, содержание ванадия - 0,15 г/т, содержание никеля - 0,12 г/т).

Пример 3

Смесь вакуумного дистиллата западносибирской нефти (фракция 350-530°С) в количестве 98 мас.%, характеризующегося следующими показателями:

плотность при 20°С - 922 кг/м3;

содержание серы - 1,5 мас.%;

содержание азота - 0,15 мас.%;

содержание ванадия - 0,45 г/т;

содержание никеля - 0,21 г/т;

до 360°С выкипает - 5 об.%

и газойлевой фракции замедленного коксования в количестве 2 мас.%, характеризующейся следующими показателями:

пределы кипения - 350-500°С;

плотность при 20°С - 980 кг/м3;

содержание серы - 0,9 мас.%

подвергают гидрогенизационной переработке при давлении 4 МПа, температуре 415°С, объемной скорости подачи сырья 0,5 ч-1, соотношении водородсодержащий газ/сырье 1200 об./об. в присутствии цеолитсодержащего алюмо-никель-молибденового катализатора.

В результате получают 2 мас.% бензинового дистиллата, 45 мас.% дизельного дистиллата (фракция 160-360°С) с содержанием серы 0,02 мас.%, который может служить компонентом товарного дизельного топлива, и 53 мас.% облагороженного остатка, выкипающего выше 360°С и характеризующегося содержанием серы 0,06 мас.%, который является высококачественным сырьем для процесса каталитического крекинга (плотность при 20°С - 917 кг/м3, содержание азота - менее 0,14 мас.%, содержание ванадия - 0,11 г/т, содержание никеля - 0,10 г/т).

Класс C10G47/02 отличающийся используемыми катализаторами

модифицированные цеолиты y с тримодальной внутрикристаллической структурой, способ их получения и их применение -  патент 2510293 (27.03.2014)
способ получения дизельного топлива с улучшенными противоизносными и цетановыми характеристиками -  патент 2499032 (20.11.2013)
способ переработки тяжелого углеводородного сырья -  патент 2495087 (10.10.2013)
совместная обработка дизельного топлива и растительного масла для получения гибридного дизельного биотоплива с низкой температурой помутнения -  патент 2487923 (20.07.2013)
способ переработки углеводородсодержащего сырья -  патент 2485168 (20.06.2013)
способ переработки углеводородсодержащего сырья (варианты) -  патент 2485167 (20.06.2013)
способ регенерации металлов из тяжелых продуктов гидропереработки -  патент 2469113 (10.12.2012)
процесс селективного гидрокрекинга с применением бета цеолита -  патент 2424276 (20.07.2011)
способ получения топливных дистиллятов -  патент 2398812 (10.09.2010)
способы и системы водородообработки и способы улучшения существующей системы с неподвижным слоем -  патент 2393203 (27.06.2010)

Класс C10G65/12 включая ступени крекинга и другие ступени гидрообработки

способ получения базового состава смазочного масла -  патент 2528977 (20.09.2014)
способ гидрокрекинга с использованием реакторов периодического действия и сырья, содержащего 200 м.д.масс.-2% масс. асфальтенов -  патент 2509798 (20.03.2014)
способ гидрокрекинга -  патент 2470989 (27.12.2012)
способ гидроизомеризации -  патент 2469072 (10.12.2012)
способ получения средних дистиллятов гидроизомеризацией и гидрокрекингом тяжелой фракции, выделяемой из смеси, получаемой синтезом фишера-тропша -  патент 2469069 (10.12.2012)
способ получения высокооктанового компонента моторного топлива -  патент 2451058 (20.05.2012)
способ и установка для конверсии тяжелых нефтяных фракций в кипящем слое интегрированным получением средних дистиллятов с очень низким содержанием серы -  патент 2430957 (10.10.2011)
способ гидрогенизационной переработки вакуумного дистиллата -  патент 2430144 (27.09.2011)
способ гидрокрекинга парафина -  патент 2428458 (10.09.2011)
способ и устройство для гидрообработки и гидрокрекинга -  патент 2427610 (27.08.2011)
Наверх