твердый электролит и способ его получения

Классы МПК:C04B35/48 на основе оксидов циркония или гафния или цирконатов или гафнатов
C04B35/626 получение или обработка порошков индивидуально или в шихте
Автор(ы):, ,
Патентообладатель(и):ХЕРАЕУС ЭЛЕКТРО-НАЙТ ИНТЕРНЭШНЛ НВ (BE)
Приоритеты:
подача заявки:
2003-08-08
публикация патента:

Изобретение относится к производству огнеупорных изделий, в частности к изготовлению твердых электролитов из порошков тугоплавких соединений, и может быть использовано в электротехнике и металлургических отраслях промышленности. Техническим результатом изобретения является создание твердых электролитов, отличающихся улучшенными технологическими и эксплуатационными свойствами. Способ включает получение твердого электролита из нанодисперсных порошков заданного состава, полученных плазмохимическим способом. Полученные порошки предварительно подвергают последовательной термообработке при 800-1400°C в течение 0,5-1 ч, затем осуществляют механическую активацию в шаровой мельнице с добавлением поверхностно-активного вещества в течение 25-100 часов, смешивают с органической связкой и спекают в печи в течение 10 часов при (1200±20)°C, в течение 12 часов при повышении от 1200 до 1600°C, охлаждают 0,5 часа от 1600 до 1200°C, выдерживают 10 часов при температуре 1200°C с последующим охлаждением до комнатной температуры вместе с печью. В качестве поверхностно-активного вещества используют олеиновую кислоту в количестве 1-2 вес.%, а в качестве органической связки - парафин в количестве 16-20 вес.%. 2. н.п. ф-лы, 2 табл.

Формула изобретения

1. Способ получения твердого электролита, содержащего диоксид циркония, стабилизированный оксидом магния, включающий подготовку порошка, его активацию, формование, спекание и охлаждение, отличающийся тем, что нанодисперсные порошки, полученные плазмохимическим способом, заданного состава предварительно подвергают последовательной термообработке при 800-1400°C в течение 0,5-1 ч механическую активацию осуществляют в шаровой мельнице с добавлением поверхностно-активного вещества в течение 25-100 ч, смешивают с органической связкой и спекают в печи в течение 10 ч при (1200±20)°C, в течение 12 ч при повышении от 1200 до 1600°C, охлаждают 0,5 ч от 1600 до 1200°C, выдерживают 10 ч при температуре 1200°C с последующим охлаждением до комнатной температуры вместе с печью, причем в качестве поверхностно-активного вещества используют олеиновую кислоту в количестве 1-2 вес.%, а в качестве органической связки - парафин в количестве 16-20 вес.%.

2. Твердый электролит, полученный способом по п.1, содержащий диоксид циркония, стабилизированный оксидом магния, отличающийся тем, что он содержит компоненты при следующем соотношении, вес.%: MgO - 3-5, ZrO2 - остальное.

Описание изобретения к патенту

Изобретение относится к производству огнеупорных изделий, в частности к изготовлению твердых электролитов из порошков тугоплавких соединений, и может быть использовано в электротехнике и металлургических отраслях промышленности.

Известно использование крупнодисперсных порошков диоксида циркония, содержащих стабилизирующие компоненты для производства твердых электролитов (Патент РФ №1211244).

Однако в крупнодисперсных средах стабилизирующие добавки, как правило, неоднородно распределяются в композиции, что приводит к:

- негативному влиянию на уплотнение системы при спекании

- неоднородности фазового состава зерен конечного продукта

- большому разбросу по дисперсности частиц получаемого порошка

Наиболее близким по достигаемому результату к заявляемому объекту является твердый электролит, содержащий порошок диоксида циркония, стабилизированный диоксидом магния (US 4565792 А, кл. C 04 В 35/48, опубл. 21.01.1986).

Предлагается также способ получения твердого электролита путем смешения компонентов, термообработки и спекания.

Недостатком данного способа является то, что введение порошкового стабилизатора в крупнокристаллический порошок диоксида циркония требует длительного перемешивания компонентов и высокой температуры спекания, приводящей к росту зерна, а значит, к расстабилизации и потере механических свойств.

Техническим результатом предлагаемого изобретения является создание твердых электролитов из порошков путем изменения их дисперсности, который отличается улучшенными технологическими и эксплуатационными свойствами, а также разработка способа его получения путем подбора условий процесса, гарантирующих продукту необходимые характеристики.

Указанный технический результат достигается тем, что предлагается:

- твердый электролит, изготовленный из порошка стабилизированного диоксида циркония, полученного плазмохимическим способом, в котором весовое соотношение компонентов составляет: оксид магния 3-5 вес.%, диоксид циркония - остальное;

- способ получения твердого электролита, заключающийся в том, что нанодисперсные порошки, полученные плазмохимическим способом, заданного состава, характеризующиеся равномерным распределением компонент, подвергают предварительной термообработке компонентов на воздухе, а затем механической активации в шаровой мельнице с добавлением поверхностно-активного вещества в течение 50-100 часов. Подготовленные порошки смешивают с органической связкой и спекают в печи в течение 10 часов при (1200±20)°C, и в течение 12 часов при повышении температуры от 1200 до 1650°C с выдержкой при этой температуре 1 час, затем охлаждают 0.5 часа с 1600 до 1200°C, выдерживают 10 часов при 1200°C с последующим охлаждением до комнатной температуры вместе с печью. В качестве поверхностно-активного вещества используют олеиновую кислоту в количестве 1-2 вес.%, а в качестве органической связки - парафин ТУ 6-09-3637 в количестве 16-20 вес%.

Использование стабилизированных порошков оксидов металлов, полученных методом плазмохимического синтеза для изготовления твердых электролитов, является весьма привлекательным.

Главное преимущество состоит в том, что плазмохимические ультрадисперсные порошки обладают высокой однородностью распределения стабилизирующей добавки и средний размер кристаллитов порядка 20 нм имеет большую удельную поверхность до 50 м /г. Однако прямое использование плазмохимических порошков не обеспечивает необходимых технологических характеристик изделия. Они характеризуются низкой насыпной плотностью, нулевой текучестью. Их активность к спеканию очень высока, поэтому не удается получить равномерную усадку готового изделия.

Предварительная подготовка перед спеканием плазмохимических порошков позволяет получить качественный твердый электролит. Это достигается тем, что нанодисперсные порошки стабилизированного диоксида циркония предварительно подвергают низкотемпературному отжигу и механической активации. Отжиг осуществляют на воздухе при температуре 800-1400°C в течение 0.5-1 часа, тем самым увеличивают насыпную плотность и, следовательно, снижают содержание необходимого количества связки. Интервалы температуры и времени выбраны экспериментальным путем. Затем проводят механическую активацию в шаровой мельнице с добавлением олеиновой кислоты 1-2% в течение 50-100 часов. Такое количество олеиновой кислоты обычно используется для увеличения смачивания порошковых частиц парафином. Экспериментально доказано, что время механической активации менее 25 часов недостаточно для необходимых технологических свойств нанодисперсных порошков, а более 100 часов проводить активацию нецелесообразно, так как изменения свойств порошков уже незначительны. Подготовленный таким образом порошок смешивают с парафином в количестве 16-29 вес.% и спекают в печи в 2 ступени - в течение 10 часов при (1200±20)°C и в течение 12 часов при постепенном повышении температуры от 1200 до 1650°C с выдержкой при 1650°C в течение 1 часа. При содержании парафина менее 16% шликер теряет текучесть и для ее повышения необходимо увеличивать температуру литья, что приводит к разложению парафина. Содержание парафина более 29% приводит к расслоению шликера.

Для более ясного понимания сути предлагаемого изобретения рассмотрим примеры.

Пример №1

Твердый электролит готовят из плазмохимического порошка ZrO2 , содержащего необходимое количество стабилизирующей добавки. Отжиг на воздухе проводят при температуре 1200°C в течение 60 минут. Измерение насыпной плотности после отжига показало, что для порошка ZrO2 она увеличилась лишь на 5%. Затем отожженный порошок механически активируют в шаровой мельнице с добавлением 2 вес.% олеиновой кислоты в течение 100 часов. Определение насыпной плотности порошка, проведенное по ГОСТ 19440-74, установило, что насыпная плотность порошка ZrO2 увеличилась с 0.2 до 0.85 г/см3. К отожженному и активированному плазмохимическому порошку добавляют стандартную органическую связку - парафин ТУ 6-09-637-7 в количестве 18 вес.%. Смешивание проводят в смесителе, например типа «Гарт», с подогреваемым резервуаром и снабженным механической мешалкой.

Пример №2

Твердый электролит готовят из плазмохимического порошка ZrO2 , стабилизированного плазмохимическими порошками 3 вес.% MgO. Отжиг на воздухе проводят при температуре 800°C в течение 30 минут. Насыпная плотность стабилизированного плазмохимического порошка ZrO2, прошедшего предварительный отжиг, увеличилась лишь на 12%. Затем отожженные порошки активируют в шаровой мельнице с добавлением 1.5 вес.% олеиновой кислоты в течение 50 часов. Определение насыпной плотности полученных порошков, проведенное по ГОСТ 19440-74, показало, что насыпная плотность стабилизированного плазмохимического порошка ZrO2, прошедшего предварительный отжиг и последующую механическую активацию, увеличилась с 0.3 до 1.2 г/см3 К отожженной и активированной массе плазмохимических порошков добавляют парафин в количестве 16 вес.%. Далее проводят смешивание в смесителе «Гарт».

В таблице 1, 2 приведен ряд характеристик прототипа и данного технического решения.

Таблица 1
 Характеристика
твердый электролит и способ его получения, патент № 2284975 /твердый электролит и способ его получения, патент № 2284975 о сопротивление термическому удару Проводимость (Ом·м)-1 Размер зерна, мкм
Прототип10%1.5 2.5±0.5
Заявляемое техническое решение45% 51.2±0.5

Таблица 2
  Количество связкиРазмер зерна, мкм твердый электролит и способ его получения, патент № 2284975 /твердый электролит и способ его получения, патент № 2284975 о сопротивление термическому удару
Время МА 25 час25%1.1±0.5 25%
50 час 18%1.2±0.5 45%
100 час 17%1.5±0.540%
Температура отжига 80035%1.1±0.5 20%
1000 18%1.2±0.545%
140017% 2.5±0.535%

Анализ приведенных данных показывает, что предлагаемый твердый электролит в 4.5 раза устойчивее к термическому удару, при одновременном повышении проводимости в 3 раза.

Указанные свойства проявляются при использовании нанодисперсных порошков дисперсностью 10-20 нм, времени механической активации 50 часов и температуре обжига 1000°C. Отклонения от предлагаемого способа получения твердого электролита приводят к резкому снижению сопротивляемости изделия к тепловому удару.

Класс C04B35/48 на основе оксидов циркония или гафния или цирконатов или гафнатов

способ изготовления керамических наконечников для волоконно-оптических соединителей -  патент 2509752 (20.03.2014)
наполнители и композитные материалы с наночастицами диоксида циркония и кремнезема -  патент 2472708 (20.01.2013)
огнеупор, содержащий двуокись циркония и углерод, и способ его изготовления -  патент 2463277 (10.10.2012)
шихта для получения материала на основе стабилизированного нанопорошка диоксида циркония -  патент 2463276 (10.10.2012)
спеченный и легированный продукт на основе циркона + nb2o5 или ta2o5 -  патент 2453519 (20.06.2012)
способ получения титан-, цирконий-, гафний-, германий- и оловосодержащих керамик -  патент 2440957 (27.01.2012)
огнеупорный материал на основе циркона -  патент 2440952 (27.01.2012)
объемный твердый электролит для высокотемпературных электротехнических устройств и способ его изготовления -  патент 2422952 (27.06.2011)
способ получения жаростойкого цирконсодержащего материала -  патент 2400451 (27.09.2010)
способ получения огнеупорного керамического материала на основе циркона -  патент 2399600 (20.09.2010)

Класс C04B35/626 получение или обработка порошков индивидуально или в шихте

способ получения композиционного керамического материала -  патент 2524061 (27.07.2014)
способ получения конструкционной алюмооксидной керамики -  патент 2522487 (20.07.2014)
способ получения кордиеритовой массы для технической керамики -  патент 2521873 (10.07.2014)
способ изготовления магнезиальнокварцевого проппанта -  патент 2515280 (10.05.2014)
способ изготовления керамики на основе диоксида циркония -  патент 2513973 (20.04.2014)
способ получения нанодисперсного порошка оксида циркония, стабилизированного оксидом иттрия и/или скандия -  патент 2492157 (10.09.2013)
способ изготовления заготовок керамических изделий -  патент 2491253 (27.08.2013)
автоматизированная технологическая линия для непрерывного производства твердофазных композиционных материалов на основе сложных оксидов -  патент 2489255 (10.08.2013)
способ получения конструкционной алюмооксидной керамики -  патент 2453517 (20.06.2012)
способ получения порошков фаз кислородно-октаэдрического типа -  патент 2448928 (27.04.2012)
Наверх