способ изготовления высокопрочной термоупрочненной арматурной стали

Классы МПК:C21D8/08 для армирования бетона
Автор(ы):, , , , , , , ,
Патентообладатель(и):Открытое акционерное общество "Западно-Сибирский металлургический комбинат" (RU)
Приоритеты:
подача заявки:
2004-12-27
публикация патента:

Изобретение относится к черной металлургии, в частности к изготовлению термоупрочненной арматурной стали с использованием тепла прокатного нагрева, и может быть использовано при производстве высокопрочной стержневой арматуры периодического профиля средних диаметров. Для обеспечения высоких пластических характеристик заготовку нагревают, подвергают горячей деформации с единичным обжатием в последнем проходе 22,5-23,5% с получением стержневой арматуры периодического профиля средних диаметров, и используя тепло прокатного нагрева, ведут циклическое охлаждение поверхности с количеством циклов, равным трем, в течение времени (0,030-0,055)Д с в каждом цикле охлаждения с промежуточным отогревом поверхности после первого цикла охлаждения в течение 0,38-0,43 с, после второго цикла охлаждения в течение 0,48-0,54 с, окончательным отогревом поверхности в течение 4,5-5,5 с и окончательное охлаждение на воздухе. 2 табл.

Формула изобретения

Способ изготовления высокопрочной термоупрочненной арматурной стали, преимущественно стержневой арматуры периодического профиля средних диаметров, с использованием тепла прокатного нагрева, включающий нагрев заготовки, ее горячую деформацию, циклическое охлаждение поверхности раската с промежуточным и окончательным отогревами поверхности до температур ниже точки Ac1 и окончательное охлаждение на воздухе, отличающийся тем, что перед циклическим охлаждением проводят деформацию с единичным обжатием 22,5-23,5% от площади поперечного сечения, а циклическое охлаждение проводят с количеством циклов, равным трем, в течение времени (0,030-0,055)Д с в каждом цикле охлаждения с промежуточным отогревом поверхности после первого цикла охлаждения в течение 0,38-0,43 с, после второго цикла охлаждения в течение 0,48-0,54 с и окончательный отогрев поверхности проводят в течение 4,5-5,5 с, где Д - диаметр стержня арматурной стали, мм.

Описание изобретения к патенту

Изобретение относится к черной металлургии, в частности к изготовлению термоупрочненной арматурной стали с использованием тепла прокатного нагрева, и может быть использовано при производстве высокопрочной стержневой арматуры периодического профиля средних диаметров.

Известны способы термической обработки проката. Например, известен способ термической обработки с использованием тепла прокатного нагрева, включающий переохлаждение поверхности ниже точки Мн на глубину 0,3-0,5 мм со скоростью V=(2,4/D×10 4±150)°C/c с последующим отогревом до Мн+(200-300)°С в течение времени способ изготовления высокопрочной термоупрочненной арматурной   стали, патент № 2287021 , определяемого из математического выражения (1,3-0,0583D)cспособ изготовления высокопрочной термоупрочненной арматурной   стали, патент № 2287021 способ изготовления высокопрочной термоупрочненной арматурной   стали, патент № 2287021 способ изготовления высокопрочной термоупрочненной арматурной   стали, патент № 2287021 0,9с, и окончательное охлаждение, где D - диаметр стержня, мм (патент СССР №1782241, кл. C 21 D 1/02, опубл. 15.12.1992, БИ №46, 1992 г.).

Наиболее близким к заявляемому способу по технической сущности и достигаемому положительному результату является способ термической обработки проката, преимущественно стержневой арматуры мелких профилей, с использованием тепла прокатного нагрева, включающий нагрев заготовки, ее горячую прокатку, рекристаллизацию стали, циклическое охлаждение поверхности с количеством циклов, равным двум, охлаждение поверхности в первом цикле в течение (0,017-0,019)Д с, во втором цикле (0,05-0,6) Д с, промежуточный отогрев поверхности между циклами составлял 0,5-0,6 с, окончательный отогрев поверхности при общем времени термической обработки раската в течение 7,5-8,5 с, и окончательное охлаждение на воздухе, где D - диаметр стержня, мм (патент РФ №2227811, кл. C 21 D 1/02, опубл. 27.04.2004, БИ №12, 2004 г.).

Недостатком известных способов является невысокий уровень нормируемых потребительских свойств и механических характеристик, таких как относительное и равномерное удлинение при разрыве.

Задачей заявляемого изобретения является возможность получения высоких пластических характеристик у высокопрочной арматуры, имеющей временное сопротивление разрыву более 1000 н/мм2.

Поставленная задача достигается тем, что в способе термической обработки проката с использованием тепла прокатного нагрева, включающем нагрев заготовки, ее горячую деформацию, циклическое охлаждение поверхности раската с промежуточным и окончательным отогревами поверхности до температур ниже точки Ac1 и окончательное охлаждение на воздухе, согласно изобретению перед циклическим охлаждением проводят деформацию с единичным обжатием 22,5-23,5% от площади поперечного сечения, а циклическое охлаждение проводят с количеством циклов, равным трем, в течение времени (0,030-0,055)Д с в каждом цикле охлаждения с промежуточным отогревом поверхности после первого цикла охлаждения в течение 0,38-0,43 с, после второго цикла охлаждения в течение 0,48-0,54 с и окончательный отогрев поверхности проводят в течение 4,5-5,5 с, где Д - диаметр стержня, мм.

Техническая сущность изобретения заключается в следующем.

На формирование служебных свойств, таких как пластичность и прочность, особое влияние оказывают процессы рекристаллизации, протекание которых активно начинается уже при температурах 650°С. При температурах конца прокатки 1050°С процесс рекристаллизации занимает доли секунд, что приводит к быстрому росту зерна и, соответственно, к разупрочнению металла и снижению его пластических характеристик.

Для подавления процессов динамической рекристаллизации и роста зерна необходимо перед началом процесса термоупрочнения провести деформацию раската с единичным обжатием не менее 22,5%, при единичном обжатии более 23,5% происходит дополнительный разогрев раската за счет большой степени деформации, что отрицательно сказывается на служебных свойствах готового проката. Кроме того, установлено, что для получения в поверхностном слое структуры высокоотпущенного мартенсита, обеспечивающего высокие прочностные характеристики при одновременном повышении пластических, охлаждение поверхности в каждом цикле необходимо проводить в течение времени не менее 0,030 Д с при промежуточном отогреве поверхности после первого цикла не менее 0,38 с. При охлаждении поверхности в каждом цикле в течение времени более 0,055Д с не остается достаточного количества тепла для получения в поверхностном слое структуры высокоотпущенного мартенсита. Промежуточный отогрев поверхности после первого цикла охлаждения в течение времени более 0,43 с и более 0,54 с после второго цикла приведет к отогреву поверхностного и переходного слоя, соответственно, выше точки Ac1 и резкому снижению прочностных характеристик. При промежуточном отогреве после второго цикла охлаждения менее 0,48 с и окончательном отогреве менее 4,5 с не происходит полная релаксация структурных напряжений, что приводит к резкому снижению пластических характеристик. Окончательный отогрев поверхности более 5,5 с приводит к снижению прочностных характеристик после электроотпуска, не улучшая пластических свойств готового проката.

Предлагаемый способ термической обработки проката с указанной совокупностью, последовательностью выполнения операций и выбором интервалов значений признаков в указанном диапазоне их изменений обеспечивает достижение технического результата, заключающегося в обеспечении высоких пластических характеристик готового проката при высоких прочностных характеристиках.

Получение данного технического результата достигнуто решением задачи на изобретательском уровне, например, проведение деформации и выбор пределов ее единичных обжатий перед началом проведения процесса термического упрочнения, проведение трех циклов охлаждения и времени их проведения, выбор величины промежуточных и окончательного отогрева поверхности, что не следует из известного уровня техники

Реализация способа изготовления высокопрочной термоупрочненной арматурной стали осуществлялась следующим образом:

Пример (табл. 1, вариант №2). В сортопрокатном цехе ОАО "ЗСМК" на мелкосортном стане 250-2 проводили промышленные испытания предложенного способа термической обработки проката при изготовлении стержневой арматуры №20 из стали 28С промышленной плавки.

Для этого заготовки сечением 100×100 мм нагревали до температуры 1200±20°С, прокатывали на непрерывном мелкосортном стане 250-2 с единичным обжатием в последнем проходе 22,6%. Затем проводили циклическое охлаждение поверхности раската с количеством циклов, равным трем. Охлаждение поверхности в первом и втором циклах проводили в течение 0,82 с, в третьем цикле охлаждения 1,03 с, промежуточный отогрев поверхности после первого цикла охлаждения составлял 0,41 с, после второго цикла 0,51 с, окончательный отогрев поверхности до температуры 390°С составлял 4,65 с. Окончательное охлаждение проводили на воздухе.

По предлагаемому способу было испытано несколько режимов, предусматривающих изменение величины единичного обжатия в последнем проходе, времени каждого цикла переохлаждения поверхности, времени промежуточных и окончательного отогревов поверхности раската в заявляемом диапазоне их изменений с выходом за граничные значения. Режимы осуществления предлагаемого способа приведены в табл. 1.

После осуществления указанных режимов определяли временное сопротивление разрыву способ изготовления высокопрочной термоупрочненной арматурной   стали, патент № 2287021 В, предел текучести способ изготовления высокопрочной термоупрочненной арматурной   стали, патент № 2287021 02, пятикратное способ изготовления высокопрочной термоупрочненной арматурной   стали, патент № 2287021 5 и равномерное удлинение способ изготовления высокопрочной термоупрочненной арматурной   стали, патент № 2287021 р после электронагрева до 400°С.

Полученные результаты промышленных испытаний приведены в табл. 2.

Так, при достижении временного сопротивления разрыву 1130-1180 н/мм2 получена стержневая арматура среднего диаметра с высоким пятикратным удлинением, составляющим 13-14%, и равномерным удлинением 3,5-4,0%, что практически в 2 раза выше, чем у стержневой арматуры, изготовленной по известному способу.

Из данных табл.1 и 2 видно, что при термической обработке стержневой арматуры по предлагаемому способу получены лучшие результаты по пластическим характеристикам при высоком уровне прочности.

Предложенный способ промышленно применим на металлургических предприятиях, имеющих непрерывные мелкосортные станы и выпускающих прокат различного назначения. Например, применение указанного способа при изготовлении высокопрочной стержневой арматуры на мелкосортном непрерывном стане 250-2 ОАО "ЗСМК" показало высокую эффективность технологии.

Таблица 1

Режимы осуществления предлагаемого способа термической обработки
№ п/пЕдиничное обжатие в последнем проходе, %1-й цикл охлаждения, с 2-й цикл охлаждения, с3-й цикл охлаждения, сОтогрев после 1 цикла, с Отогрев после 2 цикла, с Окончательный отогрев поверхности, с
122,50,60 1,100,60 0,380,48 4,50
2 22,60,82 0,821,03 0,410,51 4,65
323,5 1,100,60 1,100,43 0,545,50
422,4 0,551,15 0,550,37 0,525,60
523,61,15 0,551,15 0,440,47 4,40
Таблица 2

Механические свойства высокопрочной стержневой арматуры
№ п/п Временное сопротивление разрыву способ изготовления высокопрочной термоупрочненной арматурной   стали, патент № 2287021 В, н/мм2 Предел текучести способ изготовления высокопрочной термоупрочненной арматурной   стали, патент № 2287021 0,2, н/мм2 Пятикратное удлинение способ изготовления высокопрочной термоупрочненной арматурной   стали, патент № 2287021 5, % Равномерное удлинение способ изготовления высокопрочной термоупрочненной арматурной   стали, патент № 2287021 р, %
Предлагаемое решение
1 1130950 143,8
21170 100014 4,0
3 11801010 133,5
41120 93012 3,0
5 12001050 103,0
Прототип
  12101100 82,0

Класс C21D8/08 для армирования бетона

высокоуглеродистая сталь для производства подката для получения холоднодеформированного арматурного периодического профиля для железобетонных изделий -  патент 2479665 (20.04.2013)
высокопрочный свариваемый арматурный профиль -  патент 2478727 (10.04.2013)
способ производства стальной высокопрочной наноструктурированной арматуры -  патент 2471004 (27.12.2012)
способ проката горячекатаной арматуры периодического профиля -  патент 2467075 (20.11.2012)
способ упрочнения арматурного стержня из материала, обладающего площадкой текучести -  патент 2457259 (27.07.2012)
способ термомеханической обработки проката -  патент 2448167 (20.04.2012)
способ производства дискретно-структурированного сейсмостойкого арматурного стержня -  патент 2418867 (20.05.2011)
высокоуглеродистая сталь для производства подката для получения холоднодеформированного арматурного периодического профиля для железобетонных изделий -  патент 2399682 (20.09.2010)
способ производства горячекатаной катанки для изготовления арматурного проката периодического профиля для армирования железобетонных конструкций -  патент 2394923 (20.07.2010)
способ изготовления сейсмостойкого арматурного стержня -  патент 2393261 (27.06.2010)
Наверх