способ получения высокомолекулярного (мет)акрилового анионного флокулянта
Классы МПК: | C08F20/06 акриловая кислота; метакриловая кислота; их металлические или аммониевые соли C08F20/56 акриламид; метакриламид C02F1/56 высокомолекулярных соединений B01D21/01 использование флоккуляционных агентов |
Автор(ы): | Варюхин Владимир Андреевич (RU), Извозчикова Валентина Алексеевна (RU), Рябов Сергей Александрович (RU) |
Патентообладатель(и): | Общество с ограниченной ответственностью "Флок Карбон" (RU) |
Приоритеты: |
подача заявки:
2005-12-05 публикация патента:
27.12.2006 |
Изобретение относится к способу получения высокомолекулярных водорастворимых полимеров, используемых в качестве флокулянтов. Техническая задача - создание способа получения высокоэффективного высокомолекулярного (мет)акрилового водорастворимого анионного флокулянта. Предложен способ получения высокомолекулярного (мет)акрилового анионного флокулянта сополимеризацией анионного водорастворимого мономера с двойной связью с неионным мономером с двойной связью с использованием в качестве анионного водорастворимого мономера с двойной связью соли (мет)акриловой кислоты с остаточным содержанием (мет)акриловой кислоты 0,1-10%, а в качестве неионного мономера с двойной связью - амида и эфира (мет)акриловых кислот при соотношении: анионный водорастворимый мономер : амид : эфир (мет)акриловых кислот, равном 100:10:(1-6) или 100:(1-6):10. В качестве соли (мет)акриловых кислот используют соли щелочных металлов, в качестве эфира (мет)акриловых кислот используют метиловый или этиловый эфир. Способ позволяет получить высокомолекулярный (мет)акриловый анионный флокулянт в виде порошка (с близким к 100% содержанием основного вещества), хорошо растворимого в воде, высокоэффективного для очистки различных дисперсных систем, в том числе щелочных стоков с рН>10. 2 з.п. ф-лы, 4 табл.
Формула изобретения
1. Способ получения высокомолекулярного (мет)акрилового анионного флокулянта сополимеризацией анионного водорастворимого мономера с двойной связью с неионным мономером с двойной связью, отличающийся тем, что в качестве анионного водорастворимого мономера с двойной связью используют соль (мет)акриловой кислоты с остаточным содержанием (мет)акриловой кислоты 0,1-10%, а в качестве неионного мономера с двойной связью используют амид и эфир (мет)акриловых кислот при соотношении анионный водорастворимый мономер: амид: эфир (мет)акриловых кислот, равном 100:10:(1-6) или 100:(1-6):10.
2. Способ получения высокомолекулярного (мет)акрилового анионного флокулянта по п.1, отличающийся тем, что в качестве соли (мет)акриловых кислот используют соли щелочных металлов.
3. Способ получения высокомолекулярного (мет)акрилового анионного флокулянта по п.1, отличающийся тем, что в качестве эфира (мет)акриловых кислот используют метиловый или этиловый эфир.
Описание изобретения к патенту
Предлагаемое изобретение относится к способу получения высокомолекулярных водорастворимых полимеров, используемых в качестве флокулянтов, и может быть использовано на предприятиях водоподготовки, нефтеперерабатывающей и нефтехимической промышленности, черной и цветной металлургии, целлюлозно-бумажной, лакокрасочной, химической и других отраслей промышленности.
В настоящее время наиболее распространенными являются полиакриламидные флокулянты (ПАА). Однако их выпускают в большинстве случаев в виде геля с содержанием полимера 7-11%. Так в России выпускается ПАА с молекулярной массой - 4·10 5 и степенью гидролиза - 5% в виде 8%-ного геля.
Низкое содержание полимера в этих продуктах делает невыгодным их транспортировку и хранение, так как приходится перевозить, в основном, воду. Кроме того, срок хранения полиакриламид-геля всего 6 месяцев, а стабильность водных растворов - несколько дней.
За рубежом (США, Япония, ФРГ, Франция, Италия и др.) выпускается большой ассортимент полиакриламидных флокулянтов в порошкообразном, гранулированном и гелеобразном виде под разнообразными коммерческими названиями: Магнофлок, Праестол, Суперфлок, Феннопол и др. («Коагулянты и флокулянты в процессах очистки воды. Свойства. Получение. Применение». Запольский А.К., Баран А.А. Л.: Химия, 1987).
Наиболее близким к заявляемому по технической сущности и достигаемому результату, выбранным в качестве прототипа, является способ получения высокомолекулярного водорастворимого анионного полимерного флокулянта, защищенный патентом РФ №2026867, кл. C 08 F 2/38, C 08 F 20/02, C 08 F 22/02 C 08 F 226/10, C 02 F 1/56, B 01 D 21/01, опубл. 1995.01.20.
Способ заключается в полимеризации анионного водорастворимого мономера с двойной связью или его сополимеризации с неионным мономером с двойной связью в присутствии разветляющего соединения, взятого в количестве 4-80 мол.ч. на 1 млн. в пересчете на начальное содержание мономеров с двойной связью. Сополимеризацию проводят в присутствии переносчика кинетической цепи, взятого в количестве, обеспечивающем вязкость сополимера в растворе по меньшей мере 3 мПа при измерении в вискозиметре Брукфилда с UL-переходником при 25°С, концентрации полимера 0,1 мас.% в 1 М NaCl при 60 об/мин.
В качестве анионных водорастворимых мономеров с двойной связью используют соединения, выбранные из группы, содержащей (мет)акриловую кислоту, сульфоалкил(мет)акриловую кислоту, стиролсульфокислоту, ненасыщенную дикарбоновую кислоту, сульфоалкил(мет)акриламид, соли указанных кислот. В качестве неионного мономера используют соединение, выбранное из группы, содержащей (мет)акриламид, N-алкилакриламид, N,N-диалкилакриламид, винилацетат, алкил(мет)акрилат, акрилонитрил, N-винилметилацетамид, N-винилпирролидон.
Получаемые известным способом флокулянты плохо растворимы в воде. Продукт представляет собой 30% водную эмульсию, что удорожает его транспортировку и создает нестабильность свойств при хранении. Флокулянты эффективны только при обработке кислых и слабощелочных растворов (рН<8).
Задачей заявленного изобретения является создание способа получения высокоэффективного высокомолекулярного (мет)акрилового водорастворимого анионного флокулянта.
Технический результат от использования изобретения заключается в получении высокомолекулярного (мет)акрилового анионного флокулянта в виде порошка (100% содержанием основного вещества) хорошо растворимого в воде, высокоэффективного для очистки различных дисперсных систем, в том числе щелочных стоков с рН>10, а также в повышении стабильности рабочих водных растворов флокулянта.
Указанный результат достигается тем, что в способе получения высокомолекулярного (мет)акрилового анионного флокулянта в качестве анионного водорастворимого мономера с двойной связью используют соль (мет)акриловой кислоты с остаточным содержанием (мет)акриловой кислоты 0,1-10%, а в качестве неионного мономера с двойной связью используют амид и эфир (мет)акриловых кислот при соотношении анионный мономер: амид: эфир (мет)акриловых кислот, равном 100:10:(1-6) или 100:(1-6):10.
В качестве соли (мет)акриловых кислот используют соли щелочных металлов, в качестве эфира (мет)акриловых кислот используют метиловый или этиловый эфир.
Способ осуществляют следующим образом.
В реактор, снабженный обратным холодильником, загружают расчетные количества (мет)акриловой кислоты (ТУ 6-02-59-89) и едкого натра (ГОСТ 2263-71) в обессоленной воде (ТУ 6-01-2-22-77). При этом образуется соответствующее количество натриевой соли (мет)акриловой кислоты с остаточным содержанием кислоты. Затем добавляют амид (мет)акриловых кислот (ОСТ 6-01-226-87) и метиловый эфир (мет)акриловых кислот (ГОСТ 20370-74), взятые в соотношении 10:(1-6) или (1-6):10 на 100 в.ч. смеси кислоты и соли. Раствор при перемешивании нагревают до 50-60°С и вводят водный раствор инициатора (например, персульфата калия) (ТУ 38-1032-70-81). Синтез сополимера длится 50-70 мин. Затем реакционную массу упаривают до содержания сополимера 60-70%, измельчают и сушат при температуре 65-70°С до влажности не более 5%.
Характеристикой данного продукта является кинематическая вязкость и Водородный показатель рН 1% водного раствора. Величина кинематической вязкости косвенно связана с молекулярной массой сополимера: чем выше кинематическая вязкость, тем больше молекулярная масса сополимера. Определение кинематической вязкости проводят по ГОСТ 18249. Кинематическая вязкость 1%-ного водного раствора сополимера, полученного по данному способу, находится в пределах 20-280 сСт. Водородный показатель рН 1%-ного водного раствора определяли в соответствии с описанием прибора рН-метра 410. рН 1%-ных водных растворов, полученных по данному методу, находится в интервале 9,2-12,0.
Нижеследующие примеры иллюстрируют предлагаемое изобретение.
Пример №1
В реакторе, снабженном мешалкой, растворяют 85 г метакриловой кислоты в 250 мл обессоленной воды и добавляют 37 г едкого натра. При этом образуется водный раствор, содержащий 100 г натриевой соли метакриловой кислоты с остаточным содержанием метакриловой кислоты - 0,1%. Затем при постоянном перемешивании (240 об/мин) вносят 6 г амида акриловой кислоты и 10 г метилового эфира метакриловой кислоты. Термостатируют реакционную смесь при 60°С и вносят 0,1 г инициатора (персульфат калия). Синтез продолжают при постоянном перемешивании в течение 60 минут. Затем реакционную смесь упаривают. Полученный сополимер измельчают и высушивают.
Примеры 2-8 проведены аналогично примеру №1. Состав мономерной смеси, кинематическая вязкость и рН полученных продуктов приведены в таблице №1.
Из таблицы №1 следует, что в зависимости от соотношения исходных мономеров меняется молекулярная масса получающегося сополимера, что отражается на значении кинематической вязкости 1%-ного водного раствора и рН 1%-ного водного раствора сополимера. Соотношение мономеров установлено экспериментально. При меньших количествах амида и эфира (мет)акриловых кислот образуется сополимер с низкой вязкостью (меньшей молекулярной массой), что отрицательно сказывается на эффективности флокулянта. При больших количествах кислоты, амида и эфира (мет)акриловых кислот образуется неоднородный сополимер, трудно растворимый в воде. При остаточных количествах кислоты менее 0,1% сополимер неэффективен в сильно щелочных стоках.
В таблице №2 приведены сравнительные результаты по очистке гальваностоков флокулянтом, полученным по примерам №3 и 7, и флокулянтом полиакриламид-гель (ПАА) (ТУ 6-01-1049-92). При этом концентрация флокулянта, полученного предлагаемым способом, составляла 1 мг/дм3, а концентрация полиакриламида - 20 мг/дм3. Из данных таблицы №2 следует, что эффективность флокулянтов, полученных предлагаемым способом, выше, чем у ПАА при меньшей (в 20 раз) концентрации их в растворе.
Анализ на содержание ионов металлов проводили в соответствии с ГОСТ Р 51309-99.
В таблице №3 приведены сравнительные результаты по очистке модельной системы - 1% дисперсия каолина в воде флокулянтами, полученными по примерам №№1-8, и флокулянтом "Fennopol A321E" (пр-во «Kemira Chemicals Oy», Финляндия).
Эффективность флокулянтов оценивали по следующим характеристикам: кинематическая вязкость, водородный показатель рН, скорость осветления, время достижения полного осветления дисперсии, предел осветления дисперсии, определяемые по «Инструкции проведения пробного коагулирования на воде из поверхностного источника хозяйственно-питьевого водоснабжения р. Волга». По этим характеристикам рассчитывали показатель флокуляции.
Концентрация флокулянтов равнялась:
- "Fennopol A321 Е" - 0,02 мг/дм3;
- №1-8 - 0,01 мг/дм 3.
Из данных таблицы №3 следует, что эффективность полученных образцов сополимеров сопоставима, и даже превосходит, эффективность аналогичного известного продукта - "Fennopol A321E".
Стабильность водных растворов флокулянта определяли по изменению кинематической вязкости 1%-ного водного раствора во времени (таблица №4).
Как видно из приведенных данных, вязкость водного раствора флокулянта практически не меняется в течение пяти месяцев.
Таким образом, предлагаемый способ по сравнению с прототипом позволяет получать высокоэффективный анионный (мет)акриловый водорастворимый флокулянт в виде порошка, который может использоваться для очистки различных промстоков, а также питьевой и оборотной воды. Продукт получается в форме удобной для транспортировки и хранения. Водные растворы его стабильны во времени. Эффективность по очистке дисперсных систем проявляется уже при очень низких концентрациях от 0,01 до 1 мг/дм3 .
Таблица №1 | ||||||||
Исходные мономеры, г | Пример 1 | Пример 2 | Пример 3 | Пример 4 | Пример 5 | Пример 6 | Пример 7 | Пример 8 |
Метиловый эфир метакриловой кислоты | 10 | 10 | 6 | 1 | 10 | 10 | 6 | 1 |
Амид акриловой кислоты | 6 | 1 | 10 | 10 | 6 | 1 | 10 | 10 |
Ионный мономер (метакриловая кислота - 85 г, едкий натр - 37 г) Остаточное содержание кислоты - 0,1% | 100 | 100 | 100 | 100 | - | - | - | - |
Ионный мономер (метакриловая кислота - 90 г, едкий натр - 33 г) Остаточное содержание кислоты - 10% | - | - | - | - | 100 | 100 | 100 | 100 |
Кинематическая вязкость 1% водного раствора, сСт | 250 | 152 | 38 | 20 | 280 | 160 | 67 | 43 |
рН 1% водного раствора | 11,8 | 12,0 | 11,7 | 11,8 | 9,4 | 9,5 | 9,2 | 9,2 |
Таблица №2 | ||||
Ионы металлов | Входная концентрация, мг/л | Концентрация после осаждения, мг/л | ||
Пример №3 | Пример №7 | ПАА | ||
Cu 2+ | 10,78 | 1,33 | 1,13 | 1,60 |
Feобщ | 11,13 | 0,08 | 0,06 | 0,13 |
Ni 2+ | 3,20 | Отсутствует | Отсутствует | 0,06 |
Zn2+ | 0,33 | 0,09 | 0,08 | 0,16 |
ПАА - Полиакриламид-гель (ТУ 6-01-1049-92); рН гальваностоков - 9 |
Таблица №3 | ||||||
Флокулянт | Кинетическая связь, сСт. | рН 1% водного раствора | Скорость осветления дисперсии, %/20 с | Время достижения полного осветления, с | Предел осветления, % | Показатель флокуляции |
Fennopol А321Е | 85,2 | - | 68 | 60 | 85 | 21,7 |
№1 | 250 | 11,8 | 83 | 45 | 92 | 28,7 |
№2 | 152 | 12,0 | 30 | 180 | 92 | 9,0 |
№3 | 38 | 11,7 | 17 | 240 | 83 | 4,8 |
№4 | 20 | 11,8 | 6 | 210 | 63 | 1,2 |
№5 | 280 | 9,4 | 70 | 50 | 90 | 20,1 |
№6 | 160 | 9,5 | 28 | 160 | 90 | 8,4 |
№7 | 67 | 9,2 | 22 | 230 | 80 | 4,0 |
№8 | 43 | 9,2 | 10 | 200 | 69 | 1,5 |
Таблица №4 | ||||||
Время, сутки | 1 | 30 | 60 | 90 | 120 | 150 |
Кинематическая вязкость 1% водного раствора (пример №1), сСт. | 250 | 250 | 250 | 250 | 250 | 250 |
Кинематическая вязкость 1% водного раствора (пример №3), сСт. | 38 | 38 | 38 | 38 | 38 | 38 |
Кинематическая вязкость 1% водного раствора (пример №5), сСт. | 280 | 280 | 280 | 280 | 280 | 280 |
Кинематическая вязкость 1% водного раствора (пример №7), сСт. | 67 | 67 | 67 | 67 | 67 | 67 |
Класс C08F20/06 акриловая кислота; метакриловая кислота; их металлические или аммониевые соли
Класс C08F20/56 акриламид; метакриламид
Класс C02F1/56 высокомолекулярных соединений
Класс B01D21/01 использование флоккуляционных агентов