катализатор, способ его приготовления и способ получения дигидроксиалканов

Классы МПК:B01J23/72 медь
B01J37/18 газами, содержащими свободный водород
B01J37/08 термообработка
C07C29/136 >C=O содержащих групп, например -COOH
Автор(ы):, , , , , ,
Патентообладатель(и):Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (RU)
Приоритеты:
подача заявки:
2005-12-21
публикация патента:

Изобретение относится к области получения дигидроксиалканов каталитическим гидрированием, в частности каталитическим гидрированием карбоксильных групп гидроксикарбоновых кислот. Описан катализатор на основе меди и оксида кремния, содержащий 22.5-53.0 мас.% меди. Катализатор готовят восстановительным терморазложением силиката меди в токе водорода при температуре 380-450°С и применяют в процессах получения дигидроксиалканов при температуре 180-200°С. Технический результат - повышение активности и селективности катализатора. 3 н.п. ф-лы, 1 табл.

Формула изобретения

1. Катализатор получения дигидроксиалканов каталитическим гидрированием карбоксильных групп гидроксикарбоновых кислот на основе меди и оксида кремния, отличающийся тем, что катализатор содержит 22,5-53,0 мас.% меди.

2. Способ приготовления катализатора получения дигидроксиалканов каталитическим гидрированием карбоксильных групп гидроксикарбоновых кислот на основе меди и оксида кремния, отличающийся тем, что его готовят восстановительным терморазложением силиката меди, при этом получают катализатор, содержащий 22,5-53,0 мас.% меди.

3. Способ получения дигидроксиалканов каталитическим гидрированием карбоксильных групп гидроксикарбоновых кислот в присутствие медно-кремниевого катализатора при температуре 180-200°С, отличающийся тем, что в качестве катализатора используют катализатор по п.1 или катализатор, полученный по способу по п.2.

Описание изобретения к патенту

Изобретение относится к области получения дигидроксиалканов каталитическим гидрированием, в частности каталитическим гидрированием карбоксильных групп гидроксикарбоновых кислот.

Дигидроксиалканы, такие как этиленгликоль и пропиленгликоль, находят применение в производстве полиэфирных смол, в составе антиобледеняющих растворов, в производстве пищевых, косметических и лекарственных продуктов. Пропиленгликоль в отличие от этиленгликоля менее токсичен.

Традиционно производство пропиленгликоля базируется на органических соединениях, содержащихся в нефти. Пропиленгликоль получают путем гидратации пропиленоксида, стадия гидролиза которого требует высокого давления и высокой температуры. Производство пропиленоксида представляет собой сложный многостадийный процесс, отличающийся образованием большого количества побочных продуктов и низким выходом целевого продукта, что приводит к возникновению экологических проблем. [Shmant H.H. Organic Building Blocs of the Chemical industry, Wiley, New York, pp.281-283 (1989)].

В связи с необходимостью разработки более дешевого и экологически безопасного способа получения пропиленгликоля особый интерес представляет его производство из возобновляемых источников сырья, таких как растения. Хорошо известно, что растения в процессе переработки атмосферного диоксида углерода производят глюкозу, ферментация которой приводит к образованию молочной кислоты.

Количество природных ресурсов далеко не безгранично, цена продуктов переработки природных ресурсов несомненно будет возрастать. С другой стороны, очевиден прогресс в технологиях ферментации и сепарации, поэтому цена продуктов ферментации будет снижаться. Более того, тогда как производство глюкозы и молочной кислоты будет увеличиваться, цена молочной кислоты должна упасть из-за растущей конкуренции и снижения средних затрат по мере увеличения объема выпуска.

Конверсия карбоксильной группы молочной кислоты в гидроксильную группу приводит к 1,2-пропандиолу. Таким образом, если найти экономически оправданный метод восстановления карбоксильной группы гидроксикарбоновой кислоты до гидроксильной группы, был бы найден путь производства 1,2-пропандиола из возобновляемого ресурса.

Хорошо известно, что каталитическое гидрирование карбоновых кислот - это трудноосуществимый процесс, поэтому на практике его осуществляют в две стадии, когда карбоновую кислоту сначала превращают в производное, например эфир или ангидрид. Методы прямого восстановления карбоновых кислот также описаны в литературе [US 4613707, С 07 С 29/136, С 07 С 29/14, 23.09.76], но требуют высокого давления водорода и обычно ведутся в жидкой фазе. Процесс прямого восстановления гидроксикарбоновых кислот до дигидроксиалканов, в частности процесс, проходящий при низких давлениях водорода мог бы снизить затраты, связанные с превращением карбоксильной группы в ее производное и затраты на закупку и использование дорогостоящего оборудования для создания и поддержания высокого давления.

Известен катализатор для процесса прямого восстановления гидроксикарбоновых кислот до дигидроксиалканов, состоящий из меди, нанесенной в количестве от 9 до 22 мас.% на диоксид кремния, поверхностные гидроксильные группы которого могут быть закрыты силанольными и/или алкильными группами. Катализатор готовят методом пропитки по влагоемкости следующим образом: силикагель (Cab-O-Sil® BH-5, Cabot® Corporation) высушивают при температуре 120°С, пропитывают этанольным раствором гидрата нитрата меди, затем проводят восстановление катализатора в токе водорода при температуре 300°С в течение 8 ч.

Гидрирование карбоксильной группы гидроксикарбоновой кислоты проводят в паровой фазе при давлении водорода от менее чем 0,9 атм до 27,5 атм и температуре от 112,5 до 275°С. При давлении водорода 1 атм в оптимальных условиях конверсия молочной кислоты достигает 7,3% с селективностью 75% [Пат. США 6455742, С 07 С 29/141, 24.09.2002].

Недостатком известного катализатора является невысокая производительность по целевому продукту.

Изобретение решает задачу увеличения производительности процесса.

Технический результат - повышение активности и селективности катализатора.

Задача решается составом катализатора получения дигидроксиалканов каталитическим гидрированием карбоксильных групп гидроксикарбоновых кислот на основе меди и оксида кремния, который содержит 22.5-53.1 мас.% меди.

Задача решается также способом приготовления катализатора получения дигидроксиалканов каталитическим гидрированием, который готовят восстановительным терморазложением силиката меди, при этом получают катализатор, который содержит 22.5-53.0 мас.% меди.

Катализатор готовят восстановительным терморазложением в токе водорода при температуре 380-450°С в течение времени не менее 2 ч. В качестве силиката меди можно использовать природные и синтетические силикаты с заданным содержанием меди.

Задача решается также способом получения дигидроксиалканов каталитическим гидрированием карбоксильных групп гидроксикарбоновых кислот при температуре 180-200°С в присутствие медно-кремниевого катализатора, где в качестве катализатора используют катализатор, описанный выше.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

Катализатор, содержащий 22,5 мас.% меди, готовят методом терморазложения силиката меди в токе водорода при температуре 400°С в течение 2 ч.

Катализатор применяют в реакции гидрирования молочной кислоты. В стеклянный/кварцевый трубчатый U-образный термостатируемый реактор помещают 0,5 г катализатора фракции 0.25-0.5 мм, смешанного с кварцевым стеклом фракции от 0,63 до 1,6 мм. Устанавливают рабочую температуру 200°С в реакторе, поток водорода 10 л/ч и дозируют водный раствор молочной кислоты (16 мас.%) со скоростью 0,3 мл/ч. На выходе из реактора жидкие продукты собирают в ловушку и анализируют газохроматографически.

Состав продуктов реакции: 36,8% пропионовая кислота, 43,7% пропиленгликоль, 16,3% молочная кислота.

Пример 2.

Аналогичен примеру 1, с тем отличием, что используют катализаторы с содержанием меди 45,5 мас.%.

Состав продуктов реакции: 29,1% пропионовая кислота, 66,3% пропиленгликоль, 3,4% молочная кислота.

Пример 3.

Аналогичен примеру 1, с тем отличием, что используют катализатор с содержанием меди 53,1 мас.%, процесс ведут при температуре 180°С, скоростью подачи раствора молочной кислоты 0,3 мл/ч с концентрацией 16 мас.%.

Состав продуктов реакции: 23,8% пропанол, 54,2% пропионовая кислота, 2,4% пропиленгликоль, 0,8% молочная кислота.

Пример 4.

Аналогичен примеру 2, с тем отличием, что процесс ведут при температуре 180°С со скоростью подачи раствора молочной кислоты 0,2 мл/ч.

Состав продуктов реакции: 17,1% пропионовая кислота, 71,6% пропиленгликоль, 12,3% молочная кислота.

Пример 5.

Аналогичен примеру 4, с тем отличием, что процесс ведут со скоростью подачи раствора молочной кислоты 0,3 мл/ч.

Состав продуктов реакции: 13,5% пропионовая кислота, 36,4% пропиленгликоль, 51,1% молочная кислота.

Пример 6.

Аналогичен примеру 4, с тем отличием, что процесс ведут со скоростью подачи раствора молочной кислоты 0,4 мл/ч.

Состав продуктов реакции: 9,4% пропионовая кислота, 32,2% пропиленгликоль, 59,4% молочная кислота.

Пример 7.

Аналогичен примеру 4, с тем отличием, что процесс ведут со скоростью подачи раствора молочной кислоты 0,9 мл/ч.

Состав продуктов реакции: 5,1% пропионовая кислота, 11,3% пропиленгликоль, 84,6% молочная кислота.

Результаты тестирования катализаторов сведены в таблицу.

Таблица
Содержание меди, мас.%Температура реакции, °ССкорость подачи, мл/ч Степень превращения, %Селективность в пропиленгликоль, %Селективность в пропионовую кислоту, %
        
22,52000,3 845343
45,5180 0,28881 19
45,5180 0,348 7327
45,5 1800,4 407723
45,5180 0,91569 31
45,5200 0,397 6929
53,1 2000,3 99254

Пример 8.

Аналогичен примеру 1, с тем отличием, что используют катализатор с содержанием меди 45,5 мас.%, и процесс ведут при температуре 200°С, в качестве субстрата используют гликолевую кислоту с концентрацией 19 мас.%. Состав продуктов реакции: 2,1% уксусная кислота, 46,2% этиленгликоль, 6,4% 2-метил-1,3-диоксалан, 45,2% гликолевая кислота.

Как видно из приведенных примеров и таблицы, использование предлагаемого катализатора в процессе каталитического гидрирования карбоксильных групп гидроксикарбоновых кислот позволяет увеличить производительность по целевому продукту за счет повышения активности и селективности катализатора.

Класс B01J23/72 медь

катализатор для окисления сернистых соединений -  патент 2529500 (27.09.2014)
способ получения фенилэтинил производных ароматических соединений -  патент 2524961 (10.08.2014)
способ применения слоистых сферических катализаторов с высоким коэффициентом доступности -  патент 2517187 (27.05.2014)
фотокатализатор на основе оксида титана и способ его получения -  патент 2508938 (10.03.2014)
способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя -  патент 2492160 (10.09.2013)
катализатор конверсии водяного газа низкой температуры -  патент 2491119 (27.08.2013)
системы и способы удаления примесей из сырьевой текучей среды -  патент 2490310 (20.08.2013)
катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии -  патент 2489207 (10.08.2013)
способ повышения времени стабильной работы катализатора в реакции гидроалкилирования бензола ацетоном с получением кумола и способ получения кумола гидроалкилированием бензола ацетоном -  патент 2484898 (20.06.2013)
способы удаления примесей из потоков сырья для полимеризации -  патент 2480442 (27.04.2013)

Класс B01J37/18 газами, содержащими свободный водород

способ активации молибден-цеолитного катализатора ароматизации метана -  патент 2525117 (10.08.2014)
тонкослойный реактор с неподвижным слоем для химической обработки тонкоизмельченного твердого катализатора -  патент 2472577 (20.01.2013)
композиция, используемая для каталитической гидрообработки углеводородного исходного сырья, способ изготовления такого катализатора и способ применения этого катализатора -  патент 2469791 (20.12.2012)
способ приготовления нанесенного катализатора синтеза фишера-тропша на основе кобальта -  патент 2458100 (10.08.2012)
способ приготовления нанесенного катализатора синтеза фишера-тропша на основе кобальта -  патент 2456329 (20.07.2012)
способ активации катализатора синтеза фишера-тропша -  патент 2450044 (10.05.2012)
способ синтеза углеводородов -  патент 2450043 (10.05.2012)
способ активации кобальтового катализатора синтеза фишера-тропша -  патент 2445161 (20.03.2012)
способ синтеза углеводородов -  патент 2442815 (20.02.2012)
способ приготовления катализатора синтеза углеводородов -  патент 2412001 (20.02.2011)

Класс B01J37/08 термообработка

способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
катализатор для процесса гидродепарафинизации и способ его получения -  патент 2527283 (27.08.2014)
способ приготовления катализатора и способ получения пероксида водорода -  патент 2526460 (20.08.2014)
катализатор для получения синтетических базовых масел и способ его приготовления -  патент 2525119 (10.08.2014)
способ активации молибден-цеолитного катализатора ароматизации метана -  патент 2525117 (10.08.2014)
способ получения каталитического покрытия для очистки газов -  патент 2522561 (20.07.2014)
способ получения катализатора полимеризации эпсилон-капролактама -  патент 2522540 (20.07.2014)
микросферический катализатор крекинга "октифайн" и способ его приготовления -  патент 2522438 (10.07.2014)
способ изготовления металл-углерод содержащих тел -  патент 2520874 (27.06.2014)
катализатор на подложке из оксида алюминия, с оболочкой из диоксида кремния -  патент 2520223 (20.06.2014)

Класс C07C29/136 >C=O содержащих групп, например -COOH

Наверх