способ изготовления анода химического источника тока со щелочным электролитом

Классы МПК:H01M4/26 способы изготовления
B05B7/20 пламенем или продуктами сгорания 
Автор(ы):, , , , ,
Патентообладатель(и):ОАО "Аккумуляторная компания "Ригель" (RU)
Приоритеты:
подача заявки:
2005-03-22
публикация патента:

Изобретение относится к электротехнике и может быть использовано для создания защитных покрытий на одной из сторон анода химического источника тока (ХИТ) из сплава на основе алюминия. Техническим результатом изобретения является создание анода ХИТ с высокими разрядными характеристиками за счет нанесения покрытия, обеспечивающего необходимую прочность адгезии наносимого дисперсного материала и более низкую пористость, что снижает омические потери. Согласно изобретению способ изготовления анода ХИТ со щелочным электролитом из сплава на основе алюминия включает в формирование сверхзвукового потока подогретого рабочего газа, например воздуха, и нанесение (напыление) на поверхность анода покрытия порошка металла. Напыление производят при скорости потока 600÷645 м/с и его температуре 50÷99°С, температуре напыляемых частиц 50÷80°С и расходе порошка напыляемого металла 0,03÷0,05 г/см 3, в качестве порошка металла используют порошок серебра или порошки меди и серебра, наносимые на анод последовательно. 1 табл.

Формула изобретения

Способ нанесения защитного слоя покрытия на анод химического источника тока из сплава на основе алюминия, включающий формирование сверхзвукового потока подогретого рабочего газа, например воздуха, и нанесение (напыление) на поверхность анода покрытия порошка металла, отличающийся тем, что напыление производят при скорости потока 600÷645 м/с и его температуре 50÷99°С, температуре напыляемых частиц 50÷80°С и расходе порошка напыляемого металла 0,03÷0,05 г/см3, в качестве порошка металла используют порошок серебра или порошки меди и серебра, наносимые на анод последовательно.

Описание изобретения к патенту

Изобретение относится к нанесению покрытий высокоскоростным способом и может быть использовано в электротехнике, например, для создания защитных покрытий на одной из сторон анода химического источника тока из сплава на основе алюминия.

Известен способ получения термостойких изоляционных анодных пленок на алюминии и его сплавах (авт. свид. СССР №1608253). Положительный эффект достигают проведением анодирования сначала в электролите на основе хромового ангидрида, борной кислоты и оксида бериллия до толщины покрытия не менее 3 мкм при 42-46°С и напряжении 40-80 В, а затем в электролите на основе щавелевой, борной и лимонной кислот при плотности тока 1-4 А/дм2 и температуре 35-43°С в течение 50-90 мин.

Известен также способ получения термостойких изоляционных покрытий на изделиях из алюминиевых сплавов (патент России №2237758). Задачей изобретения является увеличение толщины покрытия, повышение его пробойного напряжения, постоянное сохранение этого свойства при температуре до 200°С, а также уменьшение вероятности повреждения изделий с покрытием при сборке, транспортировке и во время эксплуатации. Поставленная задача достигается тем, что согласно изобретению обработку изделий ведут в три этапа, включающих формирование покрытия в электролите, содержащем 2-6 г/л гидроксида калия и 10-30 г/л жидкого стекла при напряжении на детали от 400 В и начальной плотности переменного тока 20-25 А/дм2 с последующим понижением ее на 5% каждые 10 мин до толщины не менее 100 мкм, термическую обработку изделия с покрытием при температуре 200-250°С в течение 1-1,5 ч и пропитку в суспензии фторопласта с последующей сушкой при температуре 100-150°С.

Приведенные выше аналоги отличаются сложным и трудоемким технологическим процессом получения покрытия.

Известны способы газотермического нанесения покрытий, сущностью которых является воздействие на распыляемый материал полимера высокой температуры и кинетической энергии газовой струи. При нагреве напыляемый порошок полимера плавится, а газовая струя распыляет его и с определенной скоростью направляет на подложку.

Известен также способ получения покрытия, заключающийся в ускорении металлического порошка размером 1-200 мкм до 650-1200 м/с и нанесение порошка на изделие подогреваемым газовым потоком. Однако такие широкие диапазоны параметров режимов напыления затрудняют использование изобретения в конкретных промышленных условиях.

Недостатками этого способа являются: повышение требования к дисперсности полимерного порошка, так как мелкая фракция выгорает, а крупная лишь оплавляется; трудность получения качественного покрытия, вытекающая из самой физики процесса - частицы переменной величины находятся в высокотемпературном потоке.

(Борисов Ю.С.и др. «Газотермические покрытия из порошковых материалов». Справочник. Киев. 1987, с.23).

Известен способ нанесения покрытий, включающий подачу порошка в сверхзвуковой поток подогретого рабочего газа и нанесение его на поверхность изделия, отличающийся тем, что изделие перед нанесением порошка нагревают до 100-200°С, в сверхзвуковой поток последовательно подают металлический порошок и порошок полимера, а стенки сверхзвуковых сопел охлаждают (патент России №2041744). Недостатком этого способа является то, что он не обеспечивает достаточно высокую прочность адгезии наносимого дисперсного материала.

Исходя из задачи создания покрытия (порошок серебра или порошки меди и серебра) для анода химического источника тока из сплава на основе алюминия, наиболее близким по технической сущности является аналог по патенту России №2041744. Задачей предлагаемого изобретения является создание способа нанесения покрытия из порошка серебра или порошков меди и серебра на одну из сторон анода химического источника тока из сплава на основе алюминия, обеспечивающего достаточно высокую прочность адгезии наносимого материала.

Поставленная задача решается тем, что в известном способе, включающем формирование сверхзвукового потока подогретого рабочего газа, например воздуха, и нанесение (напыление) на поверхность анода покрытия порошка металла, напыление производят при скорости потока 600÷645 м/с и его температуре 50÷99°С, температуре напыляемых частиц 50÷80°С и расходе порошка напыляемого металла 0,03÷0,05 г/см 3, в качестве порошка металла используют порошок серебра или порошки меди и серебра, наносимые на анод последовательно. При предлагаемом способе температура напыляемых частиц не превышает значений 50÷80°С, такая температура не приводит к структурным изменениям наносимого на анод материала, то есть не происходит его окисления.

Пример.

Был изготовлен многослойный анод из сплава алюминия (алюминий А95 с оловом и индием в качестве легирующих компонентов), на одну из сторон (нерабочую) методом сверхзвукового газодинамического напыления (скорости потока 622 м/с и его температуре 72°С, температуре напыляемых частиц 65°С и расходе порошка напыляемого металла 0,040 г/см 3) по одному из вариантов был нанесен слой серебра толщиной 20 мкм. По второму варианту методом сверхзвукового газодинамического (скорости потока 631 м/с и его температуре 78°С, температуре напыляемых частиц 68°С и расходе порошка напыляемого металла 0,045 г/см3) последовательно были нанесены слои меди толщиной 35 мкм и серебра толщиной 5 мкм.

Сравнительные параметры предлагаемого способа и известного (прототипа) приведены в таблице.

Способ Режимы сверхзвукового газодинамического напыления Свойства покрытия после напыления
Скорость, м/сТемпература, °С Адгезивная прочность, кг/мм2 Пористость, %
Предлагаемый по первому варианту (напыляемый порошок серебра)600-645 50-994-5 3-5
Предлагаемый по второму варианту (напыляемые порошки меди и серебра)600-645 50-994-5,5 3-5
Известный (по прототипу RU 2041744) 650-1200100-200 1-38-15

Как следует из представленных данных, предложенный способ по сравнению с известным позволяет получить покрытия, обеспечивающие достаточно высокую прочность адгезии наносимого дисперсного материала и более низкую пористость, что делает возможным создать аноды химического источника тока с высокими разрядными характеристиками.

Класс H01M4/26 способы изготовления

способ изготовления электродов для электрохимического источника тока и устройство для его осуществления -  патент 2439752 (10.01.2012)
состав активной массы для изготовления отрицательного электрода металлогидридного аккумулятора и способ получения активной массы -  патент 2427059 (20.08.2011)
способ изготовления электродной ленты для электрохимического источника тока и устройство для его осуществления -  патент 2424601 (20.07.2011)
способ изготовления электрода электрического аккумулятора -  патент 2411615 (10.02.2011)
никель-цинковый аккумулятор и способ получения активных масс преимущественно для его электродов -  патент 2371815 (27.10.2009)
воздушный электрод химического источника тока и способ его изготовления -  патент 2366039 (27.08.2009)
способ изготовления окисно-никелевого электрода -  патент 2343596 (10.01.2009)
способ изготовления безламельного кадмиевого электрода -  патент 2343595 (10.01.2009)
способ получения гидрата закиси никеля для оксидно-никелевого электрода щелочного аккумулятора -  патент 2310951 (20.11.2007)
способ получения активной массы для кадмиевых электродов из отработанного щелочного никель-кадмиевого аккумулятора -  патент 2300828 (10.06.2007)

Класс B05B7/20 пламенем или продуктами сгорания 

устройство и способ формирования аморфной покрывающей пленки -  патент 2525948 (20.08.2014)
распылительное сопло и способ атмосферного напыления, устройство для покрытия и покрытая деталь -  патент 2519415 (10.06.2014)
способ газодинамического детонационного ускорения порошков и устройство для его осуществления -  патент 2506341 (10.02.2014)
устройство создания газокапельной струи кочетова -  патент 2482928 (27.05.2013)
детонационный метатель -  патент 2460591 (10.09.2012)
устройство для комплексной обработки внутренней поверхности детали типа гильз двс путем детонационного нанесения покрытия и механической обработки этой поверхности -  патент 2457043 (27.07.2012)
горелка для газопламенного напыления -  патент 2443478 (27.02.2012)
способ и устройство для формирования аморфного пленочного покрытия -  патент 2435870 (10.12.2011)
устройство и способ получения высокодисперсного диоксида кремния -  патент 2435732 (10.12.2011)
ствол установки детонационного напыления -  патент 2404860 (27.11.2010)
Наверх