устройство для определения минимальной энергии воспламенения взрывчатых материалов от искровых разрядов
Классы МПК: | G01N25/50 путем определения температуры воспламенения; путем определения взрывчатых свойств |
Автор(ы): | Драгунов Юрий Алексеевич (RU), Иванов Владимир Александрович (RU), Игнатов Олег Леонидович (RU), Кунчаков Николай Николаевич (RU), Трусов Валентин Николаевич (RU) |
Патентообладатель(и): | Российская Федерация,от имени которой выступает государственный заказчик - Федеральное агентство по атомной энергии (RU), Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") (RU) |
Приоритеты: |
подача заявки:
2005-08-15 публикация патента:
10.02.2007 |
Область применения: исследование и анализ материалов, преимущественно взрывчатых материалов (ВМ). Сущность изобретения: высоковольтный источник питания соединен с конденсатором и разрядными электродами, размещенными во взрывной камере, один из которых выполнен подвижным, с возможностью перемещения в сторону неподвижного с постоянной заданной скоростью, что позволяет реализовывать искровой разряд через ВМ при отключенном источнике питания. Взрывная камера снабжена открывающейся дверкой для введения внутрь ее исследуемого взрывчатого материала, а дверка снабжена блокирующей системой, размыкающей цепь высоковольтного источника питания при открытом положении дверки. Взрывная камера помещена в защитный кожух, снабженный иллюминатором и штуцером для закачки газовой среды. Технический результат: повышение точности определения, безопасности и расширение функциональных возможностей. 3 з.п. ф-лы, 1 ил.
Формула изобретения
1. Устройство для определения минимальной энергии воспламенения взрывчатых материалов от искровых разрядов, включающее высоковольтный источник питания, соединенный с конденсатором и разрядными электродами через запирающую систему, обеспечивающую исключение поступления энергии в разрядный промежуток при искровом пробое, при этом разрядные электроды установлены во взрывной камере с открывающейся дверкой, позволяющей ввести внутрь камеры исследуемый взрывчатый материал, отличающееся тем, что один из электродов выполнен подвижным с возможностью перемещения в сторону неподвижного электрода с постоянной заданной скоростью, дверка взрывной камеры снабжена блокирующей системой, размыкающей цепь высоковольтного источника питания при открытом положении дверки, а взрывная камера дополнительно помещена в защитный кожух, снабженный иллюминатором и штуцером для закачки газовой среды.
2. Устройство по п.1, отличающееся тем, что взрывная камера выполнена из оргстекла.
3. Устройство по п.1, отличающееся тем, что иллюминатор снабжен светофильтром.
4. Устройство по п.1, отличающееся тем, что защитный кожух снабжен приточно-вытяжной вентиляцией.
Описание изобретения к патенту
Изобретение относится к области исследования и анализа материалов, преимущественно взрывчатых материалов (ВМ), на чувствительность к воспламенительному импульсу, представляющему собой искровой разряд, и может быть использовано для классификационной оценки степени опасности при изготовлении, хранении, транспортировании и проведении технологических операций с ВМ.
Известно устройство для определения минимальной энергии воспламенения веществ от искровых разрядов электричества (Монахов В.Т. Методы исследования пожарной опасности веществ. М.: Химия, 1979, с.280), включающее высоковольтный источник питания, соединенный с разрядными электродами через конденсатор, при этом разрядные электроды размещены во взрывной камере, туда же помещают исследуемое вещество. Подается напряжение на конденсатор, и при некотором его значении происходит электрический пробой (возникает искра) между разрядными электродами. Выделенная при этом энергия воспламеняет исследуемое вещество, находящееся во взрывной камере. Минимальная энергия воспламенения (W) определяется наименьшим количеством накопленной в конденсаторе электрической энергии, которая, рассеиваясь в зазоре между разрядными электродами, воспламеняет исследуемое вещество и рассчитывается по соотношению:
W=CU2/2,
где С - емкость разрядной цепи, Ф;
U - напряжение на конденсаторе перед пробоем, В.
Данное устройство характеризуется недостаточной точностью определения минимальной энергии воспламенения в результате поступления в разрядный промежуток дополнительной (неконтролируемой) энергии, которая не учитывается, от источника высокого напряжения в момент возникновения искрового разряда и не моделирует реальную ситуацию, возникающую в практике, когда источник энергии (человек или технологическое оборудование) приближаются к ВМ и в этот момент происходит искровой разряд.
Наиболее близким к заявляемому решению является устройство для определения минимальной энергии воспламенения взрывчатых веществ от искровых разрядов статического электричества (А.С. СССР №1078302, МПК7 G 01 N 25/50, опубликован 07.03.84 г.), выбранное в качестве прототипа. Данное устройство содержит высоковольтный источник питания, соединенный через запирающую систему с конденсатором и разрядными электродами, причем запирающая система обеспечивает исключение поступления энергии в разрядный промежуток при искровом пробое. Испытуемый ВМ и разрядные электроды размещены во взрывной камере. Работа устройства происходит следующим образом. На конденсатор подается напряжение от высоковольтного источника, и при достижении определенного значения происходит электрический пробой между разрядными электродами. Запирающая система состоит из коронирующего острия и плоского электрода. Высокое напряжение через запирающую систему подается на конденсатор. Под воздействием электрического поля между коронирующим и плоским электродами возникает коронный разряд, ток коронного разряда заряжает конденсатор. Величину тока коронного разряда можно менять, изменяя расстояние между плоским электродом и коронирующим острием, при этом значение эквивалентного сопротивления коронного разряда запирающей системы изменяется. Большое эквивалентное сопротивление промежутка коронного разряда исключает поступление энергии источника в разрядный промежуток при возникновении искрового пробоя. Сначала устанавливается конденсатор максимальной емкости. При зарядке конденсатора до определенного напряжения между зарядными электродами во взрывной камере возникает искровой разряд, вызывающий воспламенение исследуемого вещества. Далее эксперимент повторяется при меньшей емкости конденсатора, в результате чего уменьшается энергия искрового разряда и так до тех пор, пока возникающий искровой разряд не перестанет воспламенять исследуемое вещество.
Однако данное устройство, так же как и предыдущее, характеризуется тем, что не моделируется реальная практическая ситуация и на точность определения минимальной энергии воспламенения взрывчатых материалов все же оказывает влияние высоковольтный источник энергии. Эквивалентное сопротивление промежутка коронного разряда не контролируется. Механическое изменение расстояния между плоским электродом и коронирующим острием приводит к невозможности создания идентичных условий воспламенения исследуемого материала в разных экспериментах. Следует также отметить, что данное устройство не имеет достаточной защиты от световой вспышки и негативного воздействия продуктов взрыва, имеющих место при исследовании различных классов взрывчатых материалов, что существенно снижает его безопасность и функциональные возможности.
Одной из серьезных задач, стоящих в данной области техники, является создание устройств по исследованию свойств взрывчатых материалов, моделирующих реальные практические ситуации и удовлетворяющих высоким требованиям по безопасности и охране труда обслуживающего персонала. Актуальными являются и вопросы повышения точности измерений и возможности регулирования параметров окружающей среды.
Техническим результатом предлагаемого изобретения является моделирование реальной ситуации взаимодействия объекта, несущего заряд, и исследуемого материала, повышение точности, безопасности и расширение функциональных возможностей.
Указанный технический результат достигается за счет того, что в устройстве для определения минимальной энергии воспламенения взрывчатых материалов от электрических искровых разрядов, включающем высоковольтный источник питания, соединенный через запирающую систему ("выключатель" 14) с конденсатором и разрядными электродами, один из которых выполнен подвижным, искровой разряд через ВМ реализуется в результате сближения подвижного и неподвижного электродов с постоянной заданной скоростью, при этом электрическая связь между высоковольтным источником и разрядным промежутком разорвана "выключателем" 14, что исключает попадание дополнительной (неконтролируемой) энергии в разрядный промежуток; разрядные электроды размещены во взрывной камере, снабженной открывающейся дверкой для введения в камеру исследуемого взрывчатого материала, дверка взрывной камеры снабжена блокирующей системой, размыкающей цепь высоковольтного источника питания при открытом положении дверки, а взрывная камера дополнительно помещена в защитный кожух, снабженный иллюминатором и штуцером для закачки газовой среды.
Взрывная камера может быть выполнена из оргстекла.
Иллюминатор может быть снабжен светофильтром.
Защитный кожух может быть снабжен приточно-вытяжной вентиляцией.
Выполнение одного из разрядных электродов подвижным позволяет изменять непосредственно в опыте размер разрядного промежутка и реализовать разряд конденсатора в каждом опыте при отключенном зарядном устройстве. Это позволяет полностью исключить влияние зарядного устройства на выделение энергии при пробое и тем самым повысить точность определения энергии воспламенения, а также позволяет исследовать различные классы взрывчатых материалов с обеспечением требуемой безопасности.
Обеспечение возможности движения подвижного электрода в сторону неподвижного с постоянной заданной скоростью положительно влияет на воспроизводимость результатов исследования и позволяет единообразно подходить к исследованию различных образцов взрывчатых материалов, что повышает точность определения энергии воспламенения взрывчатых материалов и расширяет функциональные возможности устройства, к тому же, стабильность скорости сближения разрядных электродов обеспечивается механизмом управления, который отдален от взрывной камеры и может приводиться в действие без опасности для обслуживающего персонала.
Снабжение дверки взрывной камеры блокирующей системой, размыкающей цепь источника питания при открытом положении дверки, исключает попадание электрического напряжения на разрядные электроды, дает возможность обеспечить безопасную установку исследуемого материала в камеру, повысить точность определения энергии, т.к. разрядные электроды не подвергаются воздействию помех, а также расширить диапазон исследования особо чувствительных веществ.
Размещение взрывной камеры в дополнительном защитном кожухе позволяет защитить обслуживающий персонал от газовой фазы продуктов сгорания (взрыва) исследуемых взрывчатых материалов, которые сконцентрированы в замкнутом пространстве и легко могут быть удалены вентиляцией, что повышает безопасность обслуживающего персонала, а также расширяет функциональные возможности, т.к. ограниченное пространство дает возможность менять газовую среду внутри, что в свою очередь повышает точность определения для различных классов взрывчатых материалов.
Использование в защитной камере иллюминатора со светофильтром позволяет без опасности для здоровья оператора визуально наблюдать за процессом испытания, что качественно сказывается на точности при исследовании особенно малочувствительных веществ (позволяет выявлять очаги начала химической реакции), расширяя диапазон исследований.
Использование штуцера для закачки газовой среды позволяет улучшить условия проведения экспериментов, что повышает точность (закачка газовой среды с определенными параметрами: температура и влажность), расширяет функциональные возможности (позволяет исследовать пирофорные вещества в инертной среде) и повышает безопасность.
Выполнение взрывной камеры из оргстекла дает возможность вести прямое наблюдение за процессом испытания.
Светофильтр защищает от световых импульсов, которыми может сопровождаться процесс исследования ПТС и смесей ВВ с порошками металлов.
Приточно-вытяжная вентиляция позволяет оперативно восстановить среду внутри защитного кожуха.
На чертеже схематично представлено заявляемое устройство:
1 - высоковольтный источник питания (зарядное устройство);
2 - механизм перемещения подвижного разрядного электрода;
3 - киловольтметр;
4 - пульт управления механизмом перемещения подвижного электрода;
5 - подвижный разрядный электрод;
6 - неподвижный разрядный электрод;
7 - открывающаяся дверка взрывной камеры;
8 - блокирующая система дверки взрывной камеры;
9 - батарея конденсаторов;
10 - аккумуляторная батарея;
11 - дополнительный защитный кожух;
12 - реле разряда батареи конденсаторов;
13 - высоковольтный кабель;
14 - "выключатель" - система отключения батареи конденсаторов от зарядного устройства;
15 - штуцер для закачки газовой среды.
Примером конкретного выполнения заявляемого устройства может служить установка определения минимальной энергии воспламенения взрывчатых материалов от электрических искровых разрядов. Установка размещена в стальном защитном кожухе и включает в себя высоковольтный источник питания (зарядное устройство), вынесенное за пределы защитного кожуха и соединенное через "выключатель" 14 (запирающая система) с батарей конденсаторов и установленными внутри кожуха двумя разрядными электродами, размещенными еще и во взрывной камере. Взрывная камера снабжена открывающейся дверкой, через которую в нее вводят исследуемое вещество, а дверка снабжена блокирующей системой, связанной с зарядным устройством таким образом, что при открытой дверке цепь питания разомкнута и замыкается только при ее закрытии. Один из разрядных электродов выполнен цилиндрической формы с торцом в виде полусферы, обращенным в сторону другого электрода, и является подвижным, другой разрядный электрод - неподвижный, имеет плоский торец. Подвижный электрод снабжен механизмом перемещения с постоянной заданной скоростью 30 мм/с. Механизм представляет собой реверсивный электродвигатель с редуктором, пульт управления которого вынесен за пределы защитного кожуха. На неподвижный электрод устанавливают исследуемый взрывчатый материал. Батарея конденсаторов соединена с зарядным устройством через "выключатель" 14 и снабжена системой блокировки, включающей реле разряда батареи конденсаторов и аккумуляторную батарею. Для контроля потенциала на обкладках батареи конденсаторов в установку введен киловольтметр, вынесенный за пределы защитного кожуха. Емкость киловольтметра и высоковольтного кабеля учитывается при расчете энергии, запасенной на конденсаторной батарее. Взрывная камера выполнена из оргстекла, а защитный кожух снабжен иллюминатором из оргстекла со светофильтром и штуцером для закачки газовой среды, а также вытяжной вентиляцией.
Работает устройство следующим образом. При отключенном от сети 220 В зарядном устройстве 1, поднятом в верхнее положение подвижном электроде 5, отключенном от зарядного устройства 1 высоковольтном кабеле 13, открытой дверке 7 взрывной камеры, размещенной в защитном кожухе 11, на неподвижный электрод 6 устанавливается навеска испытуемого взрывчатого материала. В это время цепь зарядного устройства отключена от сети блокирующей системой 8. Контакты реле 12 замкнуты. После закрывания дверки 7 цепь зарядного устройства 1 подключается к сети 220 В, контакты реле 12 размыкаются. Через штуцер 15 внутрь устройства закачивается необходимая газовая среда (аргон, азот и др.). Соединяется высоковольтный кабель 13 с зарядным устройством 1 (позволяет заряжать конденсатор до 20 кВ) через "выключатель" 14. Включается зарядное устройство 1. Включается "включатель" 14, поднимается напряжение до необходимой величины, контроль осуществляется по киловольтметру 3, при этом происходит зарядка батареи конденсаторов 9 (от 95 до 15000 пФ). Зарядка прекращается путем отключения зарядного устройства "включателем" 14.
При помощи пульта управления 4 механизмом перемещения 2 перемещается подвижный электрод 5 вниз. При его приближении к неподвижному электроду 6 происходит электрический разряд батареи конденсаторов 9 через навеску испытуемого ВМ.
Наблюдение за воспламенением (взрыв, искрение, дым) испытуемой навески ведется визуально через иллюминатор из оргстекла со светофильтром. Отсутствие одного из этих явлений говорит об отсутствии срабатывания испытуемой навески взрывчатого материала.
В случае срабатывания испытуемой навески включают приточно-вытяжную вентиляцию.
Данные о частости воспламенения получают не менее чем для 3-х уровней энергии так, чтобы частость воспламенения была как минимум для одного уровня меньше 50%, а для другого больше 50%. Далее минимальная энергия воспламенения рассчитывается по специальной программе в диапазоне от 5×10-5 до 3 Дж.
Устройство позволяет измерять минимальную энергию воспламенения веществ в расширенном диапазоне от 5×10-5 до 3 Дж с точностью 3-5%. При использовании изобретения улучшаются условия безопасности проведения работ для обслуживающего персонала на предприятиях, а также расширяется возможность проведения испытаний взрывчатых материалов различных классов (бризантные взрывчатые вещества, пиротехнические смеси, пороха).
Класс G01N25/50 путем определения температуры воспламенения; путем определения взрывчатых свойств