порошковая проволока для наплавки
Классы МПК: | B23K35/368 выбор неметаллических составов материалов электродного стержня, в том числе совместно с выбором материалов для пайки или сварки |
Автор(ы): | Березовский Александр Владимирович (RU), Балин Александр Николаевич (RU), Степанов Борис Валентинович (RU), Груздев Александр Яковлевич (RU), Краева Людмила Владимировна (RU), Назаров Виктор Петрович (RU) |
Патентообладатель(и): | Закрытое Акционерное Общество "Завод сварочных материалов" (RU) |
Приоритеты: |
подача заявки:
2005-03-09 публикация патента:
27.02.2007 |
Изобретение может быть использовано для наплавки деталей, работающих при больших удельных давлениях и повышенных температурах, например валков горячего деформирования (прокатки), в том числе валков машин непрерывного литья стальных заготовок, а также деталей химической аппаратуры, в том числе задвижек газовых и нефтяных трубопроводов. Порошковая проволока состоит из малоуглеродистой оболочки и порошкообразной шихты, содержащей следующие компоненты, мас.%: хром 12,0-14,0, флюорит 4,0-7,0, ферромолибден 1,5-2,9, никель 1,0-4,5, полевой шпат 2,0-4,0, феррохром 1,0-4,0, ферротитан 0,3-3,0, марганец 0,7-1,6, феррованадий 0,2-1,0, криолит 0,5-0,7, феррониобий 0,16-0,56, ферросилиций 0,2-1,2, железо 0,2-1,84, малоуглеродистая сталь оболочки - остальное. Порошковая проволока обеспечивает повышение стабильности горения дуги, отсутствие пор и разбрызгивания за счет комплексной шлаковой защиты расплавленного металла как на стадии капли, так и в сварочной ванне, а также повышение термической стойкости и коррозионной стойкости при уменьшении содержания дорогостоящих легирующих элементов. 3 табл.
Формула изобретения
Порошковая проволока для наплавки, состоящая из малоуглеродистой стальной оболочки и порошкообразной шихты, содержащей никель, марганец, железо, ферросплавы хрома, молибдена, ванадия и титана, а также ферросилиций, отличающаяся тем, что шихта дополнительно содержит хром и феррониобий, а также газошлакообразующие компоненты: флюорит, полевой шпат и криолит при следующем соотношении компонентов, мас.%:
Хром | 12,0-14,0 |
Флюорит | 4,0-7,0 |
Ферромолибден | 1,5-2,9 |
Никель | 1,0-4,5 |
Полевой шпат | 2,0-4,0 |
Феррохром | 1,0-4,0 |
Ферротитан | 0,3-3,0 |
Марганец | 0,7-1,6 |
Феррованадий | 0,2-1,0 |
Криолит | 0,5-0,7 |
Феррониобий | 0,16-0,56 |
Ферросилиций | 0,2-1,2 |
Железо | 0,2-1,84 |
Малоуглеродистая сталь оболочки | Остальное |
Описание изобретения к патенту
Изобретение относится к сварочному производству, а именно к наплавочным материалам, используемым для наплавки деталей, работающих при больших удельных давлениях и повышенных температурах, например валков горячего деформирования (прокатки), в том числе валков машин непрерывного литья стальных заготовок, а также деталей химической аппаратуры, в том числе задвижек газовых и нефтяных трубопроводов.
Известна порошковая проволока, состоящая из металлической оболочки и порошкообразной шихты, содержащей хром, молибден, марганец, ферросилиций, кремнефтористый натрий, железо, углеродистый хром, двуокись циркония и никель при следующем соотношении компонентов, мас.%:
Хром | 11,0-13,5 |
Углеродистый хром | 3,5-3,9 |
Никель | 0,2-0,5 |
Марганец | 0,4-0,7 |
Ферромолибден | 0,8-1,2 |
Ферросилиций | 0,3-0,6 |
Кремнефтористый натрий | 0,5-0,9 |
Двуокись циркония | 1,6-2,4 |
Железо | 4,8-6,2 |
Малоуглеродистая сталь оболочки | Остальное |
При этом коэффициент заполнения порошковой проволоки составляет 24,5-28,5% (см. патент РФ на изобретение №2083341, 6 МПК В 23 К 35/368 "Порошковая проволока", опубликованный 10.07.1997 г.).
Предлагаемое количественное соотношение компонентов известной порошковой проволоки обеспечивает получение высоких эксплуатационных свойств наплавленного металла, предотвращает появление пор и трещин в сварном шве, также имеет высокую коррозионную стойкость и износостойкость.
Однако применение указанной порошковой проволоки возможно при наличии специального оборудования для наплавки под слоем флюса, так как отсутствие в составе шихты необходимого количества газошлакообразующих компонентов не позволяет использовать данную порошковую проволоку для наплавки открытой дугой.
Кроме того, для получения высоких сварочно-технологических свойств наплавленного металла наплавку производят с предварительным подогревом до 240-280°С, что также требует дополнительного оборудования.
Кроме того, известная проволока не обеспечивает достаточной разгаростойкости наплавленного металла, что ограничивает ее применение для наплавки деталей, работающих в условиях циклических термомеханических нагрузок.
Наиболее близкой по технической сущности и назначению является порошковая проволока для наплавки деталей, работающих в условиях термомеханического циклического нагружения, состоящая из малоуглеродистой оболочки и порошкообразной шихты, содержащей графит, никель, алюминий, железо, ферросплавы: хрома молибдена вольфрама, ванадия и титана, а также кремний и ферроцерий при следующем соотношении компонентов, мас.%:
Графит | 0,4-0,7 |
Феррохром | 15,8-19,6 |
Ферромолибден | 8,1-10,3 |
Ферровольфрам | 1,1-1,8 |
Феррованадий | 2,8-3,5 |
Ферросилиций | 1,3-2,1 |
Ферромарганец | 1,3-2,7 |
Ферротитан | 2,4-3,4 |
Ферроцерий | 1,6-2,2 |
Никель | 2,8-3,8 |
Алюминий | 0,9-1,2 |
Железо | Остальное |
При этом коэффициент заполнения порошковой проволоки составляет 41% (см. патент РФ №1769481, 5 МПК В 23 К 35/368 "Порошковая проволока для наплавки", опубликованный 30.08.1994 г.).
Недостатком известной порошковой проволоки является недостаточное содержание в шихте газошлакообразующих и стабилизирующих горение дуги компонентов (2,1-3,3%), что ухудшает ее сварочно-технологические свойства, а именно ухудшает отделимость шлаковой корки. Плохая отделимость шлаковой корки способствует образованию неметаллических включений в наплавленном металле, что снижает сопротивление его образованию горячих трещин и коррозии, при этом увеличивается адгезия наплавленного металла и снижается его разгаростойкость.
Недостаточное содержание в шихте газошлакообразующих компонентов требует проведение наплавки под слоем флюса.
Кроме того, шихта известной порошковой проволоки содержит высокое содержание легирующих элементов, в том числе дорогостоящих ферросплавов.
Технический результат заявляемого изобретения предусматривает повышение сварочно-технологических свойств порошковой проволоки при многопроходной наплавке, а именно повышение стабильности горения дуги, отсутствие пор и разбрызгивания за счет комплексной шлаковой защиты расплавленного металла как на стадии капли, так и в сварочной ванне, а также повышение износостойкости, термической стойкости и коррозионной стойкости при уменьшении содержания дорогостоящих легирующих элементов.
Указанный технический результат достигается тем, что порошковая проволока для наплавки, состоящая из малоуглеродистой оболочки и порошкообразной шихты, содержащей никель, марганец, железо, ферросплавы: хрома, молибдена, ванадия и титана, а также ферросилиций, согласно изобретению шихта дополнительно содержит хром и феррониобий, а также газошлакообразующие компоненты: флюорит, полевой шпат и криолит при следующем соотношении компонентов, мас.%:
Хром | 12,0-14,0 |
Флюорит | 4,0-7,0 |
Ферромолибден | 1,5-2,9 |
Никель | 1,0-4,5 |
Полевой шпат | 2,0-4,0 |
Феррохром | 1,0-4,0 |
Ферротитан | 0,3-3,0 |
Марганец | 0,7-1,6 |
Феррованадий | 0,2-1,0 |
Криолит | 0,5-0,7 |
Феррониобий | 0,16-0,56 |
Ферросилиций | 0,2-1,2 |
Железо | 0,2-1,84 |
Малоуглеродистая сталь оболочки | Остальное |
Выбранное соотношение хрома, никеля и марганца, а также наличие в небольших количествах молибдена, ванадия, ниобия и кремния, введенных в виде ферросплавов, позволяет получить хорошо сбалансированную элементную базу для обеспечения высокого уровня свойств наплавленного металла, способного противостоять таким факторам разрушения как абразивный износ, термическая усталость и коррозия.
Введение хрома в количестве 12-14% обеспечивает получение слоя наплавленного металла со структурой мартенсита, обладающего высокой твердостью и стойкостью против окисления при температурах до 800°С. При этом концентрация углерода в наплавленном металле обеспечивается в пределах 0,12-0,16% за счет перехода его из стальной оболочки и ферросплавов. Низкое содержание углерода способствует уменьшению выделения карбидов, обеспечивая высокую коррозионную стойкость и разгаростойкость наплавленного металла. Высокая жаростойкость наплавленного металла обусловлена твердой и тугоплавкой окисной пленкой FeO Cr 2O3. При содержании хрома менее 11% эта пленка незначительна и недостаточно прочная для защиты от коррозии и термической усталости наплавленного металла
При содержании хрома больше 15% структура наплавленного металла будет мартенситно-ферритной, твердость наплавленного слоя при этом снижается, уменьшая сопротивление его абразивному износу и коррозии.
Содержание никеля в количестве 1,0-4,5% в совокупности с легирующими элементами компонентов порошковой проволоки способствует уменьшению критической скорости охлаждения наплавленного металла, повышая восприимчивость его к закалке, что повышает твердость наплавленного металла при охлаждении на воздухе и сохраняет ее высокой при рабочем нагреве. Меньшая концентрация никеля не позволяет достигнуть этот эффект, а большая концентрация приводит к появлению в структуре металла пластичной и мягкой аустенитной составляющей, что ухудшает сопротивляемость его абразивному износу.
Молибден, взаимодействуя с углеродом, образует тонкодисперсные карбиды молибдена Mo2C, которые способствуют повышению жаропрочности наплавленного металла, улучшению сопротивляемости его термической усталости и абразивному износу. Молибден уменьшает склонность к отпускной хрупкости и повышает устойчивость против водородной хрупкости. Оптимальное количество молибдена в наплавленном металле достигается при введении в шихту порошковой проволоки 1,5-2,9% ферромолибдена.
Дополнительное введение феррониобия в состав порошковой проволоки усиливает действие других компонентов, способствуя образованию мелкодисперсных карбидов. В присутствии ниобия значительно возрастает стойкость наплавленного металла против межкристаллитной коррозии и возрастает его жаропрочность. Сродство к кислороду у ниобия ниже, чем у титана, поэтому он полнее сохраняется и лучше переходит в наплавленный слой, значительно повышая его жаропрочность.
Введение феррованадия в количестве 0,2-1,0% в шихту порошковой проволоки позволяет значительно снизить чувствительность металла, содержащего хром и никель, к отпускной хрупкости при многопроходной наплавке, когда металл длительное время находится при температуре свыше 650°С, так как последующий слой попадает в зону термического влияния предыдущего слоя.
При взаимодействии ванадия с углеродом образуются карбиды ванадия, которые обеспечивают сдерживание роста зерна наплавленного металла, повышение жаропрочности и устойчивости к коррозии, а также повышение твердости в условиях высокотемпературного нагрева. Таким образом, ванадий позволяет получить высокую твердость и прочность при незначительном содержании углерода.
Упрочнение наплавленного металла происходит также за счет образования дисперсных карбидных фаз типа Ме2С 6, Ме6С, Ме2 С и интерметаллидных фаз типа Fe2Mo и FeNb. Наиболее значительное влияние на повышение износостойкости и разгаростойкости оказывает ниобий, молибден и ванадий. Введение в порошковую проволоку: феррованадия -0,2-1,0%, феррониобия - 0,16-0,56% и ферромолибдена - 1,5-2,9% позволяет получить в наплавленном металле оптимальную концентрацию ванадия, ниобия, и молибдена, а именно ванадия - 0,12-0,6%, ниобия - 0,1-0,33%, а содержание молибдена - в пределах 1,0-1,8%. Избыток этих элементов приводит к ослаблению связей между атомами решетки и, следовательно, к ухудшению термостойкости и горячей прочности наплавленного металла. Недостаток этих элементов приводит к неэффективности всей системы легирования и ухудшению свойств наплавленного металла.
Введение ферросилиция в количестве 0,2-1,2% позволяет обеспечить содержание кремния в наплавленном металле 0,15-0,9%. Наличие кремния в указанных пределах достаточно для коагуляции карбидов, что позволяет достичь эффекта повышения жаростойкости и сопротивления термоусталости при введении меньшего количества ванадия, молибдена и ниобия.
Наличие в порошковой проволоке марганца в количестве 0,7-1,6% способствует улучшению жидкотекучести наплавленного металла, лучшему растворению углерода в металле и снижает вероятность образования трещин в наплавленном слое металла.
Введение в шихту порошковой проволоки ферротитана в количестве 0,3-3,0% позволяет существенно повысить коэффициент перехода из шихты в наплавленный металл легирующих элементов. Кроме того, присутствие в наплавленном металле титана в пределах 0,05-0,5% позволяет повысить стойкость металла к межкристаллитной коррозии, а образующиеся карбиды TiC и Ti3С способствуют повышению термостойкости металла. При этом образующиеся мелкодисперсные интерметаллиды Ni3Ti являются упрочняющей фазой, а также предотвращают рост зерна в наплавленном металле при высоких рабочих температурах.
При введении меньшего количества ферротитана не достигается указанный эффект, а при его содержании выше указанных пределов наблюдается выделение -феррита, разупрочняющего наплавленный металл.
Присутствие в шихте флюорита в количестве 4-7% предотвращает окисление металла на стадии капли за счет образования ионов фтора, при этом ионы кальция действуют как раскислитель. Кроме того, шлак, обогащенный флюоритом, хорошо защищает ванну при наплавке, а также улучшает формирование наплавленного валика и отделимость шлаковой корки, что препятствует образованию в сварном шве неметаллических включений, снижая адгезию наплавленного металла, что значительно улучшает качество обрабатываемого металла, например, при прокатке, за счет отсутствия на поверхности наплавленных валков трещин и "отпечатков".
Введение полевого шпата в шихту в пределах 2-4% обеспечивает комплексную шлаковую защиту металла сварочной ванны за счет компонентов SiO2 Al2О 3, а также хорошо стабилизирует горение дуги благодаря наличию ионов калия.
Введение в состав порошковой проволоки криолита в количестве 0,5-0,8% предотвращает появление "водородных" пор. Образующийся при термическом разложении криолита фтор реагирует в расплавленном металле с водородом с образованием соединения HF, которое легко удаляется из сварочной ванны. Натрий, входящий в состав криолита, способствует стабилизации процесса горения дуги. Алюминий, также присутствующий в криолите, выступает как надежный раскислитель.
Таким образом, оптимально сбалансированное комплексное легирование наплавленного металла позволяет усилить влияние каждого элемента и, следовательно, уменьшить содержание в порошковой проволоке дорогостоящих легирующих элементов, а также улучшить эксплуатационные свойства наплавленного металла.
Технических решений, совпадающих с совокупностью существенных признаков изобретения, не выявлено, что позволяет сделать вывод о соответствии изобретения условию патентоспособности "новизна".
Заявляемые существенные признаки изобретения, предопределяющие получение указанного технического результата и их соотношение, явным образом не следуют из уровня техники, что позволяет сделать вывод о соответствии изобретения условию патентоспособности "изобретательский уровень".
Условие патентоспособности "промышленная применимость" подтверждено на примере конкретного выполнения порошковой проволоки для наплавки и результатами испытания опытных образцов.
Изготовляют порошковую проволоку диаметром 3 мм с применением стальной ленты 08 кп. размером 0,3×15 мм на стандартном оборудовании по общепринятой на заводах-изготовителях схеме. Коэффициент заполнения проволоки составляет 35%. Состав компонентов порошковой проволоки приведен в таблице 1.
Таблица 1 | ||||
Компоненты | Содержание в шихте порошковой проволоки, мас.% | |||
Прототип | 1 | 2 | 3 | |
Хром | - | 12 | 13 | 14 |
Флюорит | - | 7 | 5,5 | 4 |
Ферромолибден | 8,1-10,3 | 1,5 | 2,2 | 2,9 |
Никель | 2,8-3,8 | 4,5 | 2,75 | 1,0 |
Полевой шпат | - | 4 | 3 | 2 |
Феррохпром | 15,8-19,6 | 1 | 2.5 | 4 |
Ферротитан | 2,4-3,4 | 0,3 | 1,65 | 3 |
Марганец | 1,65 | 0,7 | 1,25 | 1,6 |
Феррованадий | 2,8-3,5 | 0,2 | 0,6 | 1 |
Криолит | - | 0,5 | 0,6 | 0,7 |
Феррониобий | - | 0,16 | 0,36 | 0,56 |
Ферросилиций | 1,3-2,1 | 1,2 | 0,7 | 0,2 |
Железо | 1,84 | 1,05 | 0,2 | |
Малоуглеродистая сталь оболочки | Остальное | Остальное | Остальное | Остальное |
Коэффициент заполнения | 41 | 35,16 | 35,16 | 35,16 |
Порошковую проволоку перед использованием прокаливают при температуре 190-230°С в течение 5 часов. Наплавляют пластины 400×100×12 мм из стали Ст.3 по ГОСТ 2176-77 в четыре прохода в соответствии с ГОСТ 26101-84. Наплавку проводят в диапазоне режимов: сварочный ток - 280-300 А, напряжение на дуге - 26-40 В, скорость наплавки - 16 м/ч.
Отделимость шлаковой корки определяют путем приложения ударной нагрузки с обратной стороны шва и отнесения площади отделившегося шлака к работе удара. Температура сварного шва при определении отделимости шлаковой корки составляет 450°С.
Определяют также диапазон напряжения на дуге, в котором может быть получен сварной шов без пор. Усредненные результаты испытаний сведены в таблицу 2.
Таблица 2 | ||
Состав порошковой проволоки | Верхний предел напряжения, при котором сварной шов без пор, В | Отделимость шлаковой корки, см2/кг·м |
1 | 36 | 15,2 |
2 | 40 | 20,0 |
3 | 38 | 16,4 |
Прототип | 32 | 10,8 |
Результаты испытаний на твердость, коррозионную стойкость, износостойкость и разгаростойкость приведены в таблице 3.
Таблица 3 | ||||
Номер образца | Твердость HRCэ | Коррозионная стойкость г/м2·ч | Относительная износостойкость г/м 2·ч | Количество циклов "нагрев-охлаждение" до образования трещин разгара |
Прототип | 35-40 | 5,093 | 1,80 | 825-895 |
1 | 40 | 3,94 | 1,71 | 908 |
2 | 42 | 4,04 | 1,78 | 915 |
3 | 44 | 4,32 | 1,62 | 1020 |
Класс B23K35/368 выбор неметаллических составов материалов электродного стержня, в том числе совместно с выбором материалов для пайки или сварки