способ получения многослойного покрытия для режущего инструмента

Классы МПК:C23C14/24 вакуумное испарение
C23C14/06 характеризуемые покрывающим материалом
Автор(ы):, , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" (RU)
Приоритеты:
подача заявки:
2005-11-25
публикация патента:

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ включает вакуумно-плазменное нанесение двухслойного покрытия. Нижний слой наносят при давлении азота в камере установки 8·10 -4 Па. В качестве нижнего слоя наносят нитрид титана и циркония или нитрид титана и железа, или нитрид титана и кремния. В качестве верхнего слоя напыляют такой же нитрид, легированный алюминием. Верхний слой наносят при давлении азота в камере установки 4·10-3 Па. В частных случаях выполнения изобретения нижний слой наносят толщиной 25-50% от общей толщины покрытия, а общая толщина покрытия составляет 3-9 мкм. Техническим результатом изобретения является повышение работоспособности и качества обработки режущего инструмента в связи с повышением его износостойкости и трещиностойкости. 1 з.п. ф-лы, 1 табл.

Формула изобретения

1. Способ получения многослойного покрытия для режущего инструмента, включающий вакуумно-плазменное нанесение двухслойного покрытия, отличающийся тем, что в качестве нижнего слоя при давлении азота в камере установки 8·10-4 Па наносят нитрид титана и циркония или нитрид титана и железа, или нитрид титана и кремния, а в качестве верхнего слоя при давлении азота в камере установки 4·10-3 Па наносят такой же нитрид, легированный алюминием.

2. Способ по п.1, отличающийся тем, что в двухслойном покрытии наносят нижний слой толщиной 25-50% от общей толщины покрытия, а общая толщина покрытия составляет 3-9 мкм.

Описание изобретения к патенту

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Известен способ получения износостойкого покрытия для режущего инструмента (РИ), при котором на его поверхность вакуумно-дуговым методом наносят покрытие из нитрида титана (TiN) или карбонитрида титана (TiCN) (см. Табаков В.П. Работоспособность режущего инструмента с износостойкими покрытиями на основе сложных нитридов и карбонитридов титана. Ульяновск: УлГТУ, 1998, 122 с.). К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе покрытия, обладающие хорошей адгезией к инструментальному материалу, имеют относительно низкую твердость и уровень сжимающих напряжений либо имеют высокую микротвердость, но недостаточную прочность сцепления с инструментальной основой. В результате этого покрытие легко подвергается абразивному износу, в нем быстро зарождаются и распространяются трещины, приводящие к разрушению покрытия, что снижает стойкость РИ с покрытием.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ, включающий вакуумно-плазменное нанесение многослойного покрытия, состоящего из нижнего слоя нитрида титана TiN и верхнего слоя нитрида титана-циркония TiZrN (см. Свидетельство на полезную модель RU 27089 U1, МПК 7 С 23 С 14/00. - 10.01.2003. - Бюл. №1), принятый за прототип.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, принятого за прототип, относится то, что в известном способе многослойное покрытие содержит слои, имеющие низкую прочность, износостойкость и трещиностойкость. В результате покрытие плохо сопротивляется процессам износа и разрушения и быстро разрушается при резании.

Повышение в последнее время стоимости металлорежущего инструмента и ужесточение требований к точности обрабатываемых деталей сделало еще более актуальной проблему повышения стойкости РИ. Основной причиной износа РИ является возникновение трещин в его режущей части, являющихся причиной появления сколов и выкрашиваний, связанных с усталостным разрушением и явлением ползучести режущего клина РИ. Одним из путей повышения стойкости и работоспособности РИ с покрытием является нанесение покрытий многослойного типа. Наличие в покрытии слоев с определенными теплофизическими и механическими свойствами способно тормозить процессы образования и распространения трещин без снижения микротвердости, улучшить термонапряженное состояние РИ с покрытием и повысить стойкость РИ. Также при резании с высокими скоростями резания интенсифицируются процессы окислительного и диффузионного износа, способствующие разупрочнению материала покрытия и инструментальной основы.

Технический результат - повышение работоспособности РИ и качества обработки.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе на рабочие поверхности РИ вакуумно-дуговым методом наносится двухслойное покрытие. Особенность заявляемого способа заключается в том, что в качестве нижнего слоя при давлении азота в камере установки 8·10 -4 Па наносят нитрид титана и циркония или нитрид титана и железа или нитрид титана и кремния, а в качестве верхнего слоя при давлении азота в камере установки 4·10 -3 Па наносят такой же нитрид, легированный алюминием. Осаждение нижнего слоя покрытия при пониженном давлении газа позволяет получить более высокую прочность сцепления покрытия с инструментальной основой. Компоновка установки для нанесения покрытия включает один катод из титанового сплава ВТ1-0, один катод из титанового сплава, содержащий вставку из циркония или железа (или составной катод со вставкой из титана и кремния), и один катод с алюминиевым корпусом, содержащий вставку из титана. При осаждении верхнего слоя используются все три катода с целью получения слоя TiZrAlN, TiFeAlN или TiSiAlN, а при осаждении нижнего слоя катод, содержащий алюминий, отключают. Использование в качестве материалов слоев сложных нитридов (TiZrAlN, TiFeAlN или TiSiAlN) обеспечивает высокую стойкость к окислительному и диффузионному износу, а также высокую износостойкость, а применение в качестве материалов обоих слоев многокомпонентных материалов способствует повышению трещиностойкости покрытия. При этом в зависимости от области использования инструмента с покрытием его общая толщина может колебаться в пределах от 3 до 9 мкм, а доля нижнего слоя составлять 25-50% от общей толщины покрытия.

Сущность изобретения заключается в следующем. В процессе резания РИ работает в условиях окислительного и диффузионного износа, а также воздействия адгезионно-усталостных процессов и трещин. Для снижения интенсивности процессов износа и разрушения покрытия и самого инструмента наиболее эффективны покрытия сложного состава, а в условиях трещинообразования еще большую эффективность показывают многослойные покрытия со слоями сложного состава. При этом увеличение количества легирующих элементов в составе покрытия приводит к росту его твердости и износостойкости, а также - трещиностойкости. Однако при этом часто снижается прочность сцепления покрытия с инструментальной основой. В то же время повысить прочность сцепления покрытия с основой можно путем снижения давления реакционного газа при его конденсации, правда при этом снижаются другие его эксплуатационные свойства (износостойкость и др.). Поэтому целесообразно применение двухслойного покрытия, в котором верхний слой должен обладать наивысшими износо- и трещиностойкостью, а нижний в первую очередь должен обеспечивать высокую прочность сцепления с инструментальной основой. В зависимости от условий резания толщина покрытия меняется от 3 до 9 мкм (меньшие значения - при прерывистом резании). При этом при уменьшении толщины покрытия доля нижнего слоя возрастает до 50%, чтобы обеспечить возможность получения сплошного слоя, способного полноценно выполнять свои функции (слои толщиной менее 1 мкм нефункциональны). Пластины с покрытиями, полученные с отклонениями от указанных в формуле изобретения толщин слоев, показали более низкие результаты.

Для экспериментальной проверки заявленного способа было нанесено покрытие-прототип с соотношением слоев, соответствующим оптимальному значению, указанному в известном способе, а также двухслойное покрытие по предлагаемому способу. Покрытия наносили на твердосплавные пластины в вакуумной камере установки "Булат-6", снабженной тремя вакуумно-дуговыми испарителями, расположенными горизонтально в одной плоскости. В качестве катодов испаряемого металла при нанесении нижнего слоя (TiZrN, TiFeN или TiSiN) использовали один катод из титанового сплава ВТ1-0 и один катод из титанового сплава, содержащий вставку из циркония или железа (или катод со вставкой из титана и кремния). При нанесении верхнего слоя (TiZrAlN, TiFeAlN или TiSiAlN) используют указанные два катода плюс катод, содержащий вставку из сплава титана и алюминия и расположенный между первыми катодами. Покрытия наносили после предварительной ионной очистки.

Ниже приведен конкретный пример осуществления предлагаемого способа (покрытие TiZrN-TiZrAlN толщиной 6 мкм).

Твердосплавные пластины МК8 (размером 4,7×12×12 мм) промывают в ультразвуковой ванне, протирают ацетоном, спиртом и устанавливают на поворотном устройстве в вакуумной камере установки "Булат-6", снабженной тремя испарителями, расположенными горизонтально в одной плоскости. Камеру откачивают до давления 6,65·10 -3 Па, включают поворотное устройство, подают на него отрицательное напряжение 1,1 кВ, включают один испаритель и при токе дуги 100 А производят ионную очистку и нагрев пластин до температуры 560-580°С. Ток фокусирующей катушки 0,4 А. Затем снижают отрицательное напряжение до 140 В, ток катушек до 0,3 А, включают два противоположных испарителя (катода) - титановый и составной (с циркониевой вставкой), подают в камеру реакционный газ - азот и осаждают покрытие толщиной 2,0 мкм (слой TiZrN) в течение 12 мин при давлении газа 8·10 -4 Па. Затем при напряжении до 140 В, токе фокусирующих катушек до 0,3 А включают третий катод (содержащий алюминий). В камеру подается реакционный газ (давление 4·10 -3 Па) - азот и осаждают второй слой покрытия (TiZrAlN) толщиной 4,0 мкм в течение 24 мин. Затем отключают испарители, подачу реакционного газа, напряжение и вращение приспособления. Через 15-20 мин камеру открывают и извлекают инструмент с покрытием.

Стойкостные испытания проводили на токарно-винторезном станке 16К20 при обработке конструкционной стали 5ХНМ. Испытывали твердосплавные пластины марки МК8, обработанные по известному и предлагаемому способам. Критерием износа служила фаска износа по задней поверхности шириной 0,4 мм.

Таблица 1

Результаты испытаний РИ с покрытием
№ пп Материал покрытияТолщина слоев покрытия (нижний-верхний), мкмНспособ получения многослойного покрытия для режущего инструмента, патент № 2297472 , ГПаК0 Стойкость, минПримечание
12 34 567
Обрабатываемый материал - 5ХНМ, V=157 м/мин, S=0,25 мм/об, t=1 мм
1TiN6 21,20,7038 Аналог
2 TiN-TiZrN2-432,0 0,5584 Прототип
3 TiZrN-TiZrAlN2-436,1 0,33117 В соответствии с формулой
4TiSiN-TiSiAlN2-4 36,00,34 116
5 TiFeN-TiFeAlN2-434,9 0,39106
6TiZrN-TiZrAlN4-2 35,90,34 110Получены с отклонениями
7TiSiN-TiSiAlN 4-235,9 0,35111
8TiFeN-TiFeAlN4-2 34,10,41 100
9 TiZrN-TiZrAlN2-436,3 0,40111 При одинаковом давлении
10TiSiN-TiSiAlN2-4 36,30,40 109
11 TiFeN-TiFeAlN2-435,2 0,45101
1. Нспособ получения многослойного покрытия для режущего инструмента, патент № 2297472 - микротвердость, ГПа (по Виккерсу).

2. К0 - коэффициент отслоения, уменьшение величины которого свидетельствует о росте прочности сцепления с инструментальной основой.

Как видно из приведенных в табл.1 данных, стойкость пластин, обработанных по предлагаемому способу, выше стойкости пластин, обработанных по способу-прототипу, в 1,2-1,35 раза. При этом пп.6-8 иллюстрируют, что при нарушении требований по назначению толщин слоев стойкость пластин снижается. В пп.9-11 показано, что в случае применения покрытий со слоями, осажденными при одинаковом давлении газа, стойкость также снижается.

Класс C23C14/24 вакуумное испарение

способ нанесения аморфного алмазоподобного покрытия на лезвия хирургических скальпелей -  патент 2527113 (27.08.2014)
испаритель для органических материалов -  патент 2524521 (27.07.2014)
скользящий элемент, в частности поршневое кольцо, имеющий покрытие, и способ получения скользящего элемента -  патент 2520245 (20.06.2014)
промышленный генератор пара для нанесения покрытия из сплава на металлическую полосу (ii) -  патент 2515875 (20.05.2014)
испаритель для вакуумного нанесения тонких пленок металлов и полупроводников -  патент 2507304 (20.02.2014)
негаммафазный кубический alcro -  патент 2507303 (20.02.2014)
способ получения многослойного покрытия для режущего инструмента -  патент 2503743 (10.01.2014)
способ получения многослойного покрытия для режущего инструмента -  патент 2503742 (10.01.2014)
способ изготовления режущих пластин -  патент 2502827 (27.12.2013)
способ сборки шатунно-поршневого узла -  патент 2499900 (27.11.2013)

Класс C23C14/06 характеризуемые покрывающим материалом

Наверх