способ получения сополимерной серы

Классы МПК:C08G75/14 полисульфиды
Автор(ы):
Патентообладатель(и):Танаянц Виктор Азатович (RU)
Приоритеты:
подача заявки:
2005-02-10
публикация патента:

Изобретение относится к химической технологии, а именно к способу получения сополимерной серы. Получение сополимерной серы заключается в сополимеризации серы с дициклопентадиеном, взятом при соотношении к сере 1:(6-8) в присутствии галогена, взятого в количестве 0,1-0,5% от массы серы путем проведения реакции взаимодействия реагентов при перемешивании последовательно в две стадии при температуре 130-145°С, и с целью повышения концентрации сополимера в сополимерной сере смесь после проведения второй стадии в течение 30-40 минут охлаждают до 82-85°С и подают дополнительно на третью стадию в реактор-смеситель для последующего разогрева до 135-150°С при перемешивании в течение 60 минут, а после третьей стадии смесь охлаждают до полного затвердевания и подвергают термообработке в течений 15-20 минут при температуре 130-135°С. 1 з.п. ф-лы, 2 табл.

Формула изобретения

1. Способ получения сополимерной серы сополимеризацией серы с дициклопентадиеном, взятом при отношении к сере 1:(6-8) в присутствии галогена, взятого в количестве 0,1-0,5% от массы серы, путем проведения реакции взаимодействия реагентов при перемешивании последовательно в две стадии при температуре 130-145°С, отличающийся тем, что, с целью повышения концентрации сополимера в сополимерной сере, смесь после проведения второй стадии в течение 30-40 мин охлаждают до 82-85°С и подают дополнительно на третью стадию в реактор-смеситель для последующего разогрева до 135-150°С при перемешивании в течение 60 мин, а после третьей стадии смесь охлаждают до полного затвердевания и подвергают термообработке в течение 15-20 мин при температуре 130-135°С.

2. Способ по п.1, отличающийся тем, что после термообработки полученную сополимерную серу охлаждают до 10°С и подвергают криогенному помолу.

Описание изобретения к патенту

Изобретение относится к химической технологии, в частности к способам получения сополимерной серы, используемой в качестве вулканизующего агента в резинотехнической и шинной отраслях промышленности.

Известен способ получения полимерной серы, в котором для стабилизации серы в ее расплав при температуре 140-150°С вводят 0,3% брома и расплав нагревают до 390-395°С с последующим охлаждением в форсуночном диспергаторе. Затем осуществляют стадии кристаллизации, помола и экстракции органическими растворителями. Полученный продукт отфильтровывают и сушат, а отработанный растворитель регенерируют (см. патент США №2569375, 1951 г.).

Недостатки данного способа заключаются в необходимости проведения стадии кристаллизации, помола и экстракции, что усложняет процесс, а также приводит к загрязнению окружающей среды.

Известен способ получения сополимерной серы путем взаимодействия серы с дициклопентадиеном (см. патент США №4902775, 1990 г.). Согласно данному способу, реакцию взаимодействия серы с дициклопентадиеном ведут в автоклаве при перемешивании в водной среде при температуре 120-200°С. Однако осуществление процесса модифицирования серы дициклопентадиеном под давлением с использованием автоклава требует дополнительных затрат на дорогостоящее оборудование, что усложняет технологический процесс и способствует его удорожанию. Кроме этого, взаимодействие серы с дициклопентадиеном в водной среде при расходе воды, превышающем расход серы ˜ в 6 раз, способствует значительному расходу энергии на стадию охлаждения большого количества воды и вызывает необходимость в осуществлении дополнительной стадии для удаления влаги из полученного продукта, в частности стадии фильтрации и сушки при температуре 45-50°С, что в целом усложняет процесс и влияет на его экономичность.

Наиболее близким по своей технической сущности является способ получения сополимерной серы сополимеризацией серы с дициклопентадиеном (см. патент Российской Федерации №2173690, 1998 г.).

Согласно данному способу реакцию сополимеризации серы с дициклопентадиеном проводят в присутствии галогена или его производных, взятого в количестве 0,1-0,5% от массы серы, при массовом соотношении серы к дициклопентадиену (6-8):1. причем сначала вводят серу и галоген или его производные, а затем днциклопентадиен и первую стадию процесса осуществляют при 130-145°С в течение 10-45 мин в эмульгаторе с числом оборотов 700-1500 об/мин, а вторую стадию процесса - при 130-145°С в течение 30-90 мин при перемешивании в смесителе с числом оборотов 10-100 об/мин, с последующим охлаждением полученного продукта до 10°С, дроблением и криогенным помолом.

Недостаток известного способа заключается в том, что при проведении сополимеризации серы с дициклопентадиеном в две стадии затруднительно обеспечить заданный температурный режим из-за экзотермичности реакции и сильного выделения тепла. При этом возможен перегрев смеси до 150°С, что приводит к резкому увеличению вязкости смеси и прекращению процесса сополимеризации.

Необходимо отметить, что из-за трудности обеспечения заданного температурного режима содержание сополимера в готовом продукте не превышает 70-72%, что является недостаточным при его использовании в качестве вулканизующего агента при производстве шин. В основу изобретения поставлена задача усовершенствования технологии получения сополимерной серы путем изменения технологических условий и параметров процесса сополимеризации серы, что упрощает и удешевляет технологический процесс в целом и влияет на его экономичность.

Поставленная задача решается сополимеризацией серы с дициклопентадиеном в присутствии галогена или его производных в три стадии. Первая стадия включает смешение серы и дициклопентадиена в эмульгаторе в присутствии галогена или его производных, взятого в количестве 0,1-0,5% от массы серы, при массовом отношении серы к дициклопентадиену (6-8):1. Первую стадию процесса осуществляют при 135-145°С в течение 10-45 минут в эмульгаторе с мешалкой с числом оборотов 700-1500 об/мин, а вторую стадию процесса проводят при температуре 130-145°С в смесителе с числом оборотов 10-100 об/мин в течение 30-40 минут, после чего смесь охлаждают до 80-85°С и подают дополнительно на третью стадию сополимеризации в реактор-смеситель при одновременном разогреве смеси до 135-150°С при перемешивании в течение 60 минут. При этом содержание сополимера в смеси на выходе из реактора-смесителя после третьей стадии достигает 72-75%.

Для последующего повышения содержания сополимера в готовом продукте смесь после третьей стадии при температуре 135-150°С разливают в формы, охлаждают до полного затвердевания и подвергают термообработке в термокамере в течение 10-30 минут при температуре 135-140°С, после чего сополимерную серу охлаждают до 10°С и подвергают криогенному помолу.

Проведение термообработки способствует более полному протеканию реакции серы с дициклопентадиеном, повышению содержания сополимера в сополимерной сере до 78-82% и стабилизации химического состава. Готовый продукт затаривают в полиэтиленовые мешки по согласованию с заказчиком.

Примеры конкретного выполнения

Пример (по прототипу)

В эмульгатор загружают 1 т жидкой серы и 0,2% от массы серы галогена (2 кг йода), а затем 150 кг дициклопентадиена, обеспечивая отношение серы к дициклопентадиену 6,6:1. Реакционную смесь интенсивно перемешивают в течение 60 минут при числе оборотов мешалки 800 об/мин. При этом температура смеси за счет протекания реакции сополимеризации достигает 140°С, после чего смесь подают в смеситель, где ведут перемешивание в течение 30 минут при числе оборотов мешалки 30 об/мин.

После завершения процесса сополимеризации полученный продукт охлаждают, дробят в щековой дробилке и затем подают на криогенный помол. Содержание полимера в полученном продукте при реализации технологии в промышленных условиях составляет 70%.

Пример 1 (по заявляемому объекту)

В эмульгатор загружают 1 т жидкой серы и 0,2% от массы серы галогена (2 кг йода), а затем 150 кг дициклопентадиена, обеспечивая отношение серы к дициклопентадиену 6,6:1. Реакционную смесь перемешивают в течение 60 минут при числе оборотов мешалки 800 об/мин. При этом температура смеси при сополимеризации серы достигает 140°С, после чего смесь подают во второй смеситель, где ведут перемешивание в течение 30 минут при числе оборотов мешалки 30 об/мин, осле этого смесь при перемешивании охлаждают до 85°С, подавая в рубашку охлаждения смесителя охлаждающую воду при температуре 20°С. Охлажденную смесь в жидком состоянии подают затем в третий реактор-смеситель, в котором реакционную смесь разогревают до 150°С, подавая пар в паровую рубашку. При этом смесь перемешивают в течение 60 минут при числе оборотов мешалки 30 об/мин.

Завершив процесс сополимеризации серы в третьем реакторе смесь при температуре 150°С разливается в формы весом по 50 кг, в которых сополимерная сера охлаждается на открытом воздухе и затвердевает. После этого формы с застывшей серой помещаются в термокамеру на 20 минут, в которой при температуре 140°С заканчивается протекание реакции сополимеризации и стабилизируется состав сополимерной серы. Пройдя термообработку, сополимерная сера охлаждается, дробится в щековой дробилке и затем подвергается криогенному помолу. Содержание полимера в готовом продукте достигает 80-82%.

Примеры 2-8

Примеры 2-8 осуществляют, как описано в примере 1. Результаты экспериментальных исследований заявляемого способа в промышленном масштабе представлены в приведенной таблице 1.

Таблица 1
Результаты экспериментальных исследований в промышленном масштабе заявляемого способа получения сополимерной серы (температура в эмульгаторе - 140°С, в смесителе - 140°С и в реакторе-смесителе - 150°С)
№ примеров Состав смеси Перемешивание в эмульгатореПеремешивание в смесителеПеремешивание в реакторе-смесителе Термообработка Содержание сополимера, %
S, кг ДЦПД, кгГалоген-йод, кг время, мин.число, об/мин. время, мин.число, об/мин. время, мин.число, об/мин. время, мин.температура, °С
1 10001502 6080030 306030 2014082,0
21000 150235 8003530 303010 13072,5
3 1000150 240800 403040 3015130 75,0
41000 1502 4080040 305030 2013076,0
51000 150250 8004530 503020 13078,0
6 1000150 260800 453060 3025140 82,0
71000 1502 7080045 307030 3014582,0
81000 150270 8004530 903035 14582,0

Результаты испытаний резиновых смесей приведены в таблице 2.

Таблица 2
Физико-механические показатели вулканизатов брекерных резиновых смесей (Результаты получены на ОАО "Ярославский шинный завод")
Наименование показателя Время вулканизации, мин 138°С
        
Сера сополимерная - проба №1
Условное напряжение при 300% удл., кгс/см2 1893131 145152156
Условная прочность при растяжении, кгс/см 2102261 280286 272285
Относительное удлинение, %710630 580560 510540
Сопротивление раздиру, кгс/см27 124136147 123128
Сера сополимерная - проба №2
Условное напряжение при 300% удл., кгс/см2 1387123 147146152
Условная прочность при растяжении, кгс/см 274245 287284 281275
Относительное удлинение, %730640 590550 540500
Сопротивление раздиру, кгс/см20 121141133 130124
Сера сополимерная - проба №3
Условное напряжение при 300% удл., кгс/см2 51122149 165167169
Условная прочность при растяжении, кгс/см 2198278 284278 262260
Относительное удлинение, %680580 550500 470470
Сопротивление раздиру, кгс/см62 139151125 108145
Сера полимерная "Кристекс ОТ-33"
Условное напряжение при 300% удл., кгс/см2 1087 139155160 162
Условная прочность при растяжении, кгс/см268 257268268 263260
Относительное удлинение, %780630 540500 490485
Сопротивление раздиру, кгс/см19 129150139 144140

Анализ результатов таблиц свидетельствует о высоких прочностных характеристиках резиновых смесей, полученных на основе сополимерной серы.

Испытания образцов сополимерной серы проводились на ОАО "Ярославский шинный завод". Для сравнения был принят эталонный образец серы "Кристекс-ОТ-33", выпускаемый немецкой фирмой "Байер".

Класс C08G75/14 полисульфиды

способ утилизации отходов серной кислоты -  патент 2500614 (10.12.2013)
органические соединения, содержащие дисульфидные группы, в качестве стабилизаторов окислительных процессов в термопластичных полимерах и способ их получения -  патент 2488605 (27.07.2013)
способ получения полисульфидов, полисульфиды и их применение -  патент 2441038 (27.01.2012)
способ утилизации сточных вод -  патент 2437846 (27.12.2011)
способ изготовления термоусаживающихся материалов -  патент 2436814 (20.12.2011)
активные катодные материалы для литиевых источников тока, включающие композиции, состоящие из коллоидных поперечно-сшитых сополимеров на основе серы и анилина -  патент 2434890 (27.11.2011)
органические соединения, содержащие дисульфидные группы, в качестве стабилизаторов окислительных процессов в термопластичных полимерах и способ их получения -  патент 2337927 (10.11.2008)
способ получения статистических сополимеров полифениленсульфидсульфонов -  патент 2311429 (27.11.2007)
способ получения модифицированной серы, используемой при производстве сероасфальта -  патент 2296785 (10.04.2007)
гибридные трехмерные сополимеры серы, включающие проводящие и непроводящие полимерные блоки и их композиции с серой, применяемые в качестве катодных материалов -  патент 2275392 (27.04.2006)
Наверх