смазка для горячей обработки металлов давлением

Классы МПК:C10M107/28 содержащие мономеры, имеющие ненасыщенный радикал, связанный с карбоксильной группой, например акрилаты
C10M103/06 соединения металлов
C10M125/04 металлы; сплавы
C10M125/10 оксиды, гидроксиды, карбонаты или бикарбонаты металлов
C10M125/18 соединения, содержащие галоген
C10M125/24 соединения, содержащие фосфор, мышьяк или сурьму
Автор(ы):,
Патентообладатель(и):Богатов Александр Александрович (RU),
Михайлова Людмила Петровна (RU)
Приоритеты:
подача заявки:
2005-06-09
публикация патента:

Использование: при производстве горячекатаных труб, например, для оправок прошивного стана. Сущность: смазка содержит в вес.%: триполифосфат натрия и хлористый натрий (2:1) 24-29,5; отходы от горения высокозольного твердого топлива и тальк (1:20) 35-39; цинковую пыль 1,0-1,5; углекислый кальций и клей поливинилацетатный (1:4) 30-40. Технический результат - повышение износостойкости инструмента и качества внутренней поверхности деформируемой трубы, увеличение скорости прокатки смазка для горячей обработки металлов давлением, патент № 2298581 на 11-12%. 2 табл., 3 ил.

смазка для горячей обработки металлов давлением, патент № 2298581 смазка для горячей обработки металлов давлением, патент № 2298581 смазка для горячей обработки металлов давлением, патент № 2298581

Формула изобретения

Смазка для горячей обработки металлов давлением на основе триполифосфата натрия и хлористого натрия, отличающаяся тем, что смазка дополнительно содержит отходы от горения высокозольного твердого топлива, тальк, цинковую пыль, углекислый кальций и клей поливинилацетатный при следующем содержании компонентов, вес.%:

Триполифосфат натрия и хлористый натрий (2:1) 24-29,5
Отходы от горения высокозольного твердого топлива и тальк (1:20) 35-39
Цинковая пыль 1,0-1,5
Углекислый кальций и клей поливинилацетатный (1:4)30-40

Описание изобретения к патенту

Предлагаемая смазка может быть использована при производстве горячекатаных труб.

При деформации нагретая заготовка соприкасается, как правило, с более холодным инструментом. В результате происходит разогрев контактной поверхности инструмента, снижение его твердости и прочности. На эти показатели влияет теплосопротивление промежуточного, разделительного слоя между металлом и инструментом. При низком коэффициенте теплопроводности в разделительном слое прочностные характеристики инструмента не уменьшаются. Это способствует повышению срока службы инструмента и качества внутренней поверхности труб.

Промежуточным, разделительным слоем является технологическая смазка, которая, кроме обеспечения теплоизоляции инструмента, способствует уменьшению напряжений трения и предотвращает нарушение сплошности слоя смазки на контактной поверхности инструмента и деформируемого металла.

Для горячей прокатки труб известны широко применяемые смазки на фосфатной основе: а.с. СССР №186601, а.с. СССР №454246, а.с. СССР №505674; заявки на патент Японии №48-30980 и др. Фосфаты при горячей прокатке реагируют с металлической поверхностью инструмента, образуя прочное сцепление в широком интервале температур. Однако смазки на фосфатной основе не обладают теплоизолирующим эффектом. В связи с этим стойкость инструмента и качество внутренней поверхности труб неудовлетворительные.

Известны также высокотемпературные смазки и на основе различных стекол: алюмоборсиликатное стекло №185В; №31с; №124; №176; стеклосмазки, заявка на патент №2791924 (США); заявка на патент №262301 (ГДР) и др. Основой всех силикатных соединений является кремнезем SiO 2 и окислы одновалентных соединений, двухвалентных главной и побочных групп, окислы высших валентностей. Этим обусловлены высокая вязкость и хорошая теплоизоляция стеклосмазок. Подобные смазки нашли применение при горячем прессовании труб. Однако текучесть этих смазок недостаточная, и поэтому сфера их применения ограничена диапазоном высоких температур, что не всегда приемлемо для обработки давлением.

Известны также твердые смазки для горячей деформации - это графит, дисульфид молибдена, тальк, слюда и др. Например, сухие смазочные материалы на основе нитрида бора и графита, заявка на патент №52-9274 (Япония); на основе боратов, сульфатов, заявка на патент №2341645 (Франция); на основе сульфатов, графита, фторированного графита, нитрида бора, дисульфида молибдена, дисульфида вольфрама, заявка на патент №4168241 (США). Эти смазки имеют хорошие антифрикционные свойства, но не отвечают другим требованиям горячей прокатки труб и могут быть использованы только в качестве наполнителя в основном составе.

Наиболее близкой по своей технической сущности к предлагаемой смазке является смазка по а.с. СССР №505674, содержащая триполифосфат натрия, хлористый натрий, гидроокись кальция и воду.

Недостатками этой смазки являются:

1. Низкие теплозащитные свойства.

2. Повышенный износ оправок при горячей прокатке и ухудшение качества внутренней поверхности труб.

Технологическая смазка, применяемая при горячей обработке металлов давлением, должна отвечать следующим требованиям:

1. Проявлять теплозащитные свойства.

2. Снижать напряжение трения между контактирующими поверхностями.

3. Обладать высокой несущей способностью и предотвращать нарушение сплошности слоя смазки при обработке давлением.

4. Иметь высокие адгезионные свойства.

5. Предотвращать массоперенос материала инструмента на трубу и образование на внутренней поверхности труб плен, рисок, вырывов частиц металла и т.п.

Задачей предлагаемого изобретения является повышение износостойкости инструмента и качества внутренней поверхности деформируемой трубы при одновременном увеличении ее длины и времени контакта горячей трубы и холодного инструмента.

Для этого предлагается смазка на основе триполифосфата натрия и хлористого натрия, которая дополнительно содержит отходы от горения высокозольного твердого топлива, тальк, цинковую пыль, углекислый кальций и клей поливинилацетатный при следующем содержании компонентов, вес.%:

Триполифосфат натрия и хлористый натрий 24-29,5
Отходы от горения высокозольного твердого топлива 
и тальк35-39
Цинковая пыль1,0-1,5
Углекислый кальций и клей поливинилацетатный 40-30

1. Триполифосфат натрия и хлористый натрий (оптимальное соотношение 2:1) при температуре прокатки (прессования) нержавеющей стали (1050-1150°С) образуют жидкотекучий расплав, который реагирует с металлической поверхностью. В результате этого смазка способствует уменьшению напряжения трения за счет образующихся фосфатов и хлоридов железа.

2. Теплозащитные свойства смазки обеспечиваются введением отходов от горения высокозольного твердого топлива и талька (оптимальное соотношение 1:20). В целом это представляет собой смесь окислов: SiO2, MgO, Al2O 3, Fe2О3, СаО и др.

3. С целью дополнительной защиты инструмента в смазочный состав введена цинковая пыль, которая при высокой температуре и высоком давлении способствует металлизации смазочного состава, повышению несущей способности смазки и уменьшению напряжений трения между контактирующими поверхностями.

4. Углекислый кальций и клей поливинилацетатный (оптимальное соотношение 1:4) придают смазке адгезионные свойства при комнатной температуре после ее нанесения на поверхность оправки или заготовки и сушки. Кроме того, эта смесь позволяет получить консистенцию с хорошей кроющей способностью, уменьшить толщину покрытия и расход смазки.

Примеры составов смазки приведены в табл.1.

Таблица 1
Примеры составов смазки
№№Компоненты смазок Известная смазка, вес.% а.с. №505674 Предлагаемая смазка, вес.%
1 23
1Na5P 3O10 Триполифосфат натрия 231619,66
2NaCl Хлористый натрий 589,83
3Са(ОН) 2 Гидроокись кальция1 --
4 Отходы горения высокозольного твердого топлива  1,671,85
5Тальк -33,437,0
6Цинковая пыль -1,031,16
7СаСО3 Углекислый кальций-7,98 6,1
8 Клей поливинилацетатный- 31,9224,4
9 ВодаОст. до 100 --
 Всего:100 100

Способ получения композиции опытных составов заключается в механическом смешивании компонентов смазки с помощью мешалки известной конструкции. Приведенные составы предлагаемой смазки №2 и №3 обеспечивают достижение полезных эффектов: теплозащитные свойства, снижение напряжения трения, повышение несущей способности смазочной пленки под воздействием контактных нормальных напряжений в очаге деформации, повышение кроющей способности и уменьшение расхода смазки.

В результате лабораторных исследований и промышленных испытаний установлено оптимальное соотношение компонентов в предлагаемом смазочном составе. Промышленные испытания осуществлялись при винтовой прокатке сплошных заготовок (прошивка) и получении полой гильзы, т.к. условия работы оправок в этом случае наиболее неблагоприятные.

При прошивке нержавеющих труб использовались оправки диаметром 82 мм (фиг.1) и заготовка круг смазка для горячей обработки металлов давлением, патент № 2298581 102÷105 мм. При этом фиксировалось толщина смазочного покрытия до и после деформации; оценивались адгезионные свойства, максимальная возможная длина гильзы (без застревания оправки); внешний вид оправки после прошивки; количество прокатанных на одной оправке заготовок; качество внутренней поверхности деформированных труб; скорость прокатки, свидетельствующая об уровне напряжения трения. Промышленные испытания показали, что наилучшие результаты по долговечности прошивной оправки (5 проходов при прошивке длинномерных заготовок из стали 12Х18Н10Т) и отсутствию дефектов в виде плен на внутренней поверхности труб получены при испытании состава №3 (см. табл.1, табл.2 сравнительного анализа качества процесса прошивки с предлагаемой смазкой и смазкой по а.с. СССР №505674 и (фиг.1-3).

Таблица 2
Сравнительный анализ качества процесса прошивки с предлагаемой смазкой по а.с. СССР №505674
№№ Характеристики качества процесса Смазка по а.с. СССР №505674Предлагаемая смазка, состав №3
1 Толщина смазочного покрытия до прокатки, мкм 400400
2 Толщина смазочного покрытия после прокатки, мкм 0150
3Максимально возможная длина получаемой при прошивке гильзы, м.4,5...5,0 5,5...6
4Состояние носика оправкиПолный износ носика оправки после первого прохода, фиг.2Работоспособное состояние носика оправки после проходов, фиг.3
5Качество внутренней поверхности гильз Многочисленные плены по средине и на заднем конце трубОтсутствие дефекта по всей длине труб
6Скорость прошивки, м/с0,640,72

Результаты измерений характеристик качества процесса по п.п.2, 3 и 6 получены в промышленном эксперименте с использованием предлагаемой смазки с объемом выборки 20 заготовок.

Как видно из табл.2, применение предлагаемой смазки по сравнению с прототипом выявило высокие адгезивные свойства, несущую способность и уменьшение напряжений трения, о чем свидетельствуют наличие остаточного слоя смазки на оправке после прокатки (150 мкм) и увеличение скорости прошивки на 11-12%. Более высокие теплозащитные свойства предлагаемой смазки по сравнению с прототипом подтверждаются увеличением максимально возможной длины гильзы, получаемой при прошивке, с 4,5 м до 6,0 м, и сохранением формы носика оправки из-за предотвращения массопереноса материала оправки на трубу, а также отсутствием плен на внутренней поверхности готовых труб.

В процессе горячей прокатки нержавеющих труб на известной смазке прочность инструмента была очень низкой (фиг.2): носик и заплечики оправки деформировались и оплавлялись на первом проходе, что ухудшило качество внутренней поверхности деформируемой трубы (появление дефектов в виде «плен»).

При использовании предлагаемой смазки для оправок, например прошивного стана достигнуто повышение ее прочности (износостойкости) (фиг.3), о чем свидетельствует сохранение без дефектов формы оправки (носик и заплечики не оплавлялись) даже после пяти проходов, как следствие, улучшилось качество внутренней поверхности труб.

Скорость прошивки с применением предлагаемой смазки по сравнению с прототипом удалось увеличить на 11-12%.

Положительный эффект от применения предлагаемой смазки может быть получен благодаря уменьшению нормы обрези в связи с увеличением длины прошиваемой гильзы, длины заготовки в контейнере при прессовании и т.п., что приведет к экономии металла при производстве бесшовных труб; исключению дорогостоящей и трудоемкой операции по обточке и расточке труб из нержавеющих марок стали, а также получению экономии металла за счет повышения качества внутренней поверхности труб; повышению стойкости инструмента и уменьшению затрат его расхода на 1 т готовой продукции; освоению производства бесшовных труб из нержавеющих марок стали с малыми размерами диаметра и толщины стенки горячекатаной и горячепрессованной заготовки, что позволит в несколько раз уменьшить цикличность производства холоднодеформированных труб, снизить себестоимость продукции и повысить конкурентную способность на рынке.

Класс C10M107/28 содержащие мономеры, имеющие ненасыщенный радикал, связанный с карбоксильной группой, например акрилаты

Класс C10M103/06 соединения металлов

триботехническая композиция для металлических узлов трения -  патент 2527243 (27.08.2014)
смазочная масляная композиция для уменьшения трения, включающая нанопористые частицы -  патент 2512379 (10.04.2014)
композиция антифрикционного твердого смазочного покрытия -  патент 2493241 (20.09.2013)
состав для улучшения антифрикционных и противоизносных свойств узлов трения -  патент 2469074 (10.12.2012)
безграфитовая высокотемпературная смазка -  патент 2458111 (10.08.2012)
композиционный антифрикционный твердый смазочный материал -  патент 2444562 (10.03.2012)
нанотехнологическая антифрикционная порошковая композиция (варианты), нанотехнологическая смазочная композиция и способ нанотехнологической смазки -  патент 2415176 (27.03.2011)
антифрикционная суспензия -  патент 2412980 (27.02.2011)
активизатор трения-сцепления -  патент 2362799 (27.07.2009)
антифрикционная смазочная композиция и способ ее получения -  патент 2321620 (10.04.2008)

Класс C10M125/04 металлы; сплавы

Класс C10M125/10 оксиды, гидроксиды, карбонаты или бикарбонаты металлов

противоизносная присадка -  патент 2525404 (10.08.2014)
высокотемпературная смазочная композиция -  патент 2517175 (27.05.2014)
способ получения магнитного масла -  патент 2502792 (27.12.2013)
смазочный состав и способ его приготовления -  патент 2499816 (27.11.2013)
порошок титаната калия и смазочная композиция на его основе -  патент 2493104 (20.09.2013)
состав резьбовой смазки -  патент 2481390 (10.05.2013)
композиция присадки к приработочному маслу для обкатки двигателя внутреннего сгорания и приработочное масло -  патент 2472848 (20.01.2013)
композиция гидроксида лития, способ получения композиции гидроксида лития и способ использования композиции гидроксида лития -  патент 2470066 (20.12.2012)
состав для улучшения антифрикционных и противоизносных свойств узлов трения -  патент 2469074 (10.12.2012)
смазочно-охлаждающая жидкость для механической обработки металлов -  патент 2440407 (20.01.2012)

Класс C10M125/18 соединения, содержащие галоген

Класс C10M125/24 соединения, содержащие фосфор, мышьяк или сурьму

Наверх