способ получения углеродных нановолокон

Классы МПК:C09C1/44 углерод 
C01B31/00 Углерод; его соединения
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):,
Патентообладатель(и):Московская государственная академия тонкой химической технологии им. М.В. Ломоносова (RU)
Приоритеты:
подача заявки:
2005-11-30
публикация патента:

Изобретение относится к неорганической химии и может быть использовано при изготовлении наполнителей композитов и катализаторов или носителей катализаторов, сорбентов, аккумуляторов водорода. В реактор загружают железосодержащий катализатор, прокаливают его в среде инертного газа, например азота или аргона, при 850-1200°С в течение 2-3 ч. Затем катализатор охлаждают до 400-500°С. В реактор подают монооксид углерода и проводят его разложение при этой температуре на железосодержащем катализаторе. Изобретение позволяет увеличить выход нановолокон, сузить интервал варьирования их диаметров, снизить температуру синтеза. 1 табл.

Формула изобретения

Способ получения углеродных нановолокон термокаталитическим разложением монооксида углерода на железосодержащем катализаторе, отличающийся тем, что катализатор предварительно прокаливают в инертной среде при температуре 850÷1200°С в течение 2÷3 ч, охлаждают, затем проводят разложение монооксида углерода при температуре 400÷500°С.

Описание изобретения к патенту

Изобретение относится к технологии производства углеродных нановолокон, которым прогнозируется широкое применение в качестве усиливающих или функциональных наполнителей композитов, катализаторов или носителей катализаторов, сорбентов, аккумуляторов водорода. Для эффективного применения по указанным направлениям углеродные нановолокна должны обладать достаточно высокой степенью графитации (малым межплоскостным расстоянием в кристаллитах графита), малыми диаметрами и узким диапазоном их варьирования.

Известен способ получения углеродных нановолокон [АС СССР №1298221, С09С 1/52, 1987 г.], основанный на разложении СО-содержащего газа на каталитически активных поверхностях.

Недостатком указанного способа является низкая степень графитации (рентгеноструктурный анализ показал рентгеноаморфность углерода) и большие значения диаметров нановолокон: 150-350 нм.

Наиболее близким к заявляемому является следующий способ [патент США №4663230, В32В 9/00, 1987]. Согласно этому способу углеродные нановолокна получают разложением углеродсодержащих соединений в области температур 850÷1200°С на железосодержащих катализаторах. Образующийся продукт характеризуется межплоскостным расстоянием 0,339÷0,348 нм и диапазоном варьирования диаметров нановолокон от 3,5 до 70 нм.

К недостаткам известного способа следует отнести достаточно широкий диапазон варьирования диаметров волокон, что значительно увеличивает неоднородность размеров пор углеродного материала, и низкий выход продукта, особенно при его получении в области высоких температур.

Техническим результатом изобретения является сужение интервала варьирования диаметров нановолокон; увеличение выхода нановолокон; снижение температуры синтеза.

Данный технический результат достигается тем, что термокаталитическое разложение монооксида углерода проводят при температурах 400÷500°С на железосодержащем катализаторе, который предварительно прокаливают в инертной среде при температурах 850÷1200°С в течение 2÷3 часов.

Примеры, иллюстрирующие изобретение.

Пример 1.

В реактор загружают ˜2 г железосодержащего катализатора с размером зерна 2÷3 мм, продувают инертным газом (азотом), нагревают до температуры 850°С и выдерживают при этой температуре (прокаливают) в течение 3 часов. После этого катализатор охлаждают до температуры 400°С и подают монооксид углерода.

Образующиеся углеродные нановолокна характеризуются межплоскостным расстоянием 0,346 нм и диапазоном варьирования диаметров от 12,4 до 44,7 нм. Выход углеродных нановолокон составляет 0,098 г/л СО.

Пример 2.

В реактор загружают ˜2 г железосодержащего катализатора с размером зерна 2÷3 мм, продувают инертным газом (аргоном), нагревают до температуры 1200°С и выдерживают при этой температуре (прокаливают) в течение 2 часов. После этого катализатор охлаждают до температуры 500°С и подают монооксид углерода.

Выход продукта и его характеристики представлены в таблице.

Пример 3.

В реактор загружают ˜2 г железосодержащего катализатора с размером зерна 2÷3 мм, продувают инертным газом (азотом), нагревают до температуры 800°С и выдерживают при этой температуре (прокаливают) в течение 3 часов. После этого катализатор охлаждают до температуры 350°С и подают монооксид углерода.

Выход продукта и его характеристики представлены в таблице.

Повышение температуры синтеза до 550°С и температуры прокаливания до 1300°С не приводит к существенным изменениям в диапазоне варьирования диаметров углеродных нановолокон, а их выход при этом снижается.

Таблица
Выход и характеристики углеродных нановолокон
Показательпрототип пример
12 3
Выход углеродных нановолокон, г/лСО 0,009÷0,0270,098 0,0610,115
Межплоскостное расстояние в кристаллитах графита, нм 0,339÷0,3480,346 0,343рентгеноаморфен
Минимальные значения диаметра волокна, нм 3,512,410,8 20,2
Максимальные значения диаметра волокна, нм7044,7 41,9128,7

Из сопоставительного анализа прототипа и предлагаемого технического решения видно, что выход углеродных нановолокон увеличивается в 2÷3 раза, диапазон варьирования диаметров нановолокон сокращается в 3÷4 раза, температура процесса снижается в 2,5 раза.

Класс C09C1/44 углерод 

способ функционализации углеродных наноматериалов -  патент 2529217 (27.09.2014)
способ изготовления водной дисперсии техуглерода -  патент 2452749 (10.06.2012)
способ переработки шунгита -  патент 2448899 (27.04.2012)
способ получения низкодисперсного технического углерода и реактор для его осуществления -  патент 2446195 (27.03.2012)
углеродистый материал -  патент 2421489 (20.06.2011)
модифицированные углеродные продукты и их применение -  патент 2402584 (27.10.2010)
композит, содержащий расслоившуюся глину в саже, и его получение -  патент 2353633 (27.04.2009)
способ получения пигмента из шунгита -  патент 2220175 (27.12.2003)
способ получения пигмента черного цвета -  патент 2201426 (27.03.2003)
неводные печатные краски и покрытия, содержащие продукты из углерода -  патент 2173327 (10.09.2001)

Класс C01B31/00 Углерод; его соединения

электродная масса для самообжигающихся электродов ферросплавных печей -  патент 2529235 (27.09.2014)
способ получения модифицированного активного угля -  патент 2529233 (27.09.2014)
способ функционализации углеродных наноматериалов -  патент 2529217 (27.09.2014)
способ модифицирования углеродных нанотрубок -  патент 2528985 (20.09.2014)
полимерный медьсодержащий композит и способ его получения -  патент 2528981 (20.09.2014)
способ количественного определения углеродных наноструктур в биологических образцах и их распределения в организме -  патент 2528096 (10.09.2014)
способ получения активного угля из растительных отходов -  патент 2527221 (27.08.2014)
конструкции, включающие молекулярные структуры с высоким аспектным соотношением, и способы их изготовления -  патент 2526969 (27.08.2014)
способ изготовления низкоплотных материалов и низкоплотный материал -  патент 2525488 (20.08.2014)
способ и установка для производства терморасширенного графита -  патент 2524933 (10.08.2014)

Класс B82B3/00 Изготовление или обработка наноструктур

Наверх