порошковый коррозионно-стойкий материал

Классы МПК:C22C33/02 порошковой металлургией 
Автор(ы):, , , , , , , ,
Патентообладатель(и):Закрытое акционерное общество "Новомет-Пермь" (RU)
Приоритеты:
подача заявки:
2005-07-22
публикация патента:

Изобретение относится к порошковой металлургии, в частности к порошковым коррозионно-стойким материалам на основе железа. Может применяться для изготовления деталей, работающих в агрессивных средах, например, нефтедобывающей, химической промышленности. Порошковый коррозионно-стойкий материал содержит, мас.%: хром 16-20; никель 10-15; молибден 2-3; углерод 0,1-0,3; медь 15-30; железо - остальное. Полученный материал обладает высокой коррозионной стойкостью. 2 табл.

Формула изобретения

Порошковый коррозионно-стойкий материал на основе железа, содержащий хром, никель, молибден и углерод, отличающийся тем, что он дополнительно содержит медь, введенную методом инфильтрации, при следующем соотношении компонентов, мас.%:

хром16-20
никель10-15
молибден2-3
углерод0,1-0,3
медь15-30
железоостальное

Описание изобретения к патенту

Изобретение относится к порошковой металлургии, в частности к порошковым коррозионно-стойким материалам на основе железа, используемым для изготовления деталей, работающих в агрессивных средах, например, в нефтедобывающей, химической промышленности.

Известен ряд коррозионно-стойких материалов, таких как компактная нержавеющая сталь 12Х18Н10Т (ГОСТ 5632-72), легированный чугун типа нирезист (Машиностроение: Энциклопедия. М.: Машиностроение, 2001), порошковая нержавеющая сталь ПК20Х18Н10М2 (Исследование метода электрохимического импеданса к исследованию коррозии пористой порошковой стали 316L / В.И.Кичигин, М.В.Полякова, Т.А.Сюр и др. // Защита металлов. 2002. Т.38, №6. С.632-639).

Недостатком перечисленных материалов является низкая коррозионная стойкость в солянокислых растворах, что ограничивает область их применения.

В качестве прототипа выбрана порошковая нержавеющая сталь ПК20Х18Н10М2, в состав которой входят хром, никель, молибден, углерод и железо.

Основным недостатком прототипа является относительно невысокая коррозионная стойкость, что приводит к повышенному износу материала, работающего в агрессивных средах.

Настоящее изобретение решает задачу повышения коррозионной стойкости порошковых нержавеющих сталей.

Указанный технический результат достигается тем, что порошковый коррозионно-стойкий материал на основе железа, содержащий хром, никель, молибден и углерод, дополнительно содержит медь, введенную методом инфильтрации, при следующем соотношении компонентов, мас.%:

Хром16-20
Никель10-15
Молибден2-3
Углерод0,1-0,3
Медь15-30
Железоостальное

Пропитка материала медью приводит к отсутствию пористости, что существенно повышает коррозионную стойкость сталей.

Возможность осуществления изобретения может быть показана на примере получения материала ПК20Х18Н12М2Д25-пр. с оптимальным содержанием компонентов в заявляемых пределах.

Для получения материала порошки исходных компонентов смешивают с сухой смазкой, полученную смесь прессуют при давлении 400-600 МПа. В качестве исходных компонентов может быть использован предварительно легированный порошок нержавеющей стали (Х18Н12М2). Пористость образцов после прессования составляет 15-18%.

Спекание проводят в восстановительной атмосфере или вакууме при температуре 1150±10°С, совмещая с инфильтрацией медью.

Коррозионные испытания полученных материалов проводили в среде NACE (водный раствор 5% NaCl + 3% HCl) в соответствии с ASTM В 117-97 электрохимическим и весовым методами при температурах от 20±2°С до 80±3°С в статических (без перемешивания раствора) и динамических (перемешивание раствора с помощью магнитной мешалки) условиях.

В таблицах 1, 2 приведены коррозионные свойства заявляемого материала и известных коррозионно-стойких материалов, наиболее близких по составу.

Как следует из приведенных в таблицах данных, предлагаемый материал имеет более низкую скорость коррозии в солянокислых средах по сравнению с аналогами и прототипом.

Таблица 1
Скорость коррозии материалов, определенная весовым методом
Марка материала Скорость коррозии, г/м2·ч
Статические условия Динамические условия
20±2°С80±3°С 20±2°С80±3°С
Нирезист (аналог) 0,23,51,9 9,5
12Х18Н10Т (аналог) 0,155,9 1,99,3
ПК20Х18Н12М2-порошковая (прототип) 3,658,5 4,2110,7
ПК20Х18Н12М2Д25-пр 0,141,3 1,688,7
Таблица 2
Скорость коррозии материалов, определенная электрохимическим методом
Марка материалаСкорость коррозии, г/м 2·ч
Статические условияДинамические условия
20±2°С 80±3°С20±2°С 80±3°С
Нирезист (аналог)0,20 20,81,0023
12Х18Н10Т (аналог) 0,33531,85 85
ПК20Х18Н12М2-порошковая (прототип)0,38 1,65--
ПК20Х18Н12М2Д25-пр 0,090,1 0,84,9

Класс C22C33/02 порошковой металлургией 

композиция, улучшающая обрабатываемость резанием -  патент 2529128 (27.09.2014)
способ получения диффузионно-легированного порошка железа или порошка на основе железа, диффузионно-легированный порошок, композиция, включающая диффузионно-легированный порошок, и прессованная и спеченная деталь, изготовленная из упомянутой композиции -  патент 2524510 (27.07.2014)
порошковый износо- корозионно-стойкий материал на основе железа -  патент 2523648 (20.07.2014)
способ получения дисперсноупрочненной высокоазотистой аустенитной порошковой стали с нанокристаллической структурой -  патент 2513058 (20.04.2014)
способ получения беспористого карбидочугуна для изготовления выглаживателей -  патент 2511226 (10.04.2014)
смазка для композиций порошковой металлургии -  патент 2510707 (10.04.2014)
спеченный материал для сильноточного скользящего электроконтакта -  патент 2506334 (10.02.2014)
способ изготовления стали с упрочняющими наночастицами -  патент 2493282 (20.09.2013)
низколегированный стальной порошок -  патент 2490353 (20.08.2013)
порошок на основе железа и его состав -  патент 2490352 (20.08.2013)
Наверх