способ фотодинамической терапии и электрохимической деструкции меланомы хориоидеи

Классы МПК:A61F9/00 Способы и устройства для лечения глаз; приспособления для вставки контактных линз; устройства для исправления косоглазия; приспособления для вождения слепых; защитные устройства для глаз, носимые на теле или в руке
A61F9/007 способы или устройства, применяемые в хирургии глаза
A61F9/008 использующие лазеры
A61N1/18 воздействие электрическим током, подводимым через контактные электроды 
A61N5/067 с использованием лазерного луча
A61K31/409  содержащие четыре таких кольца, например производные порфина, билирубин, биливердин
A61P35/00 Противоопухолевые средства
A61P27/00 Лекарственные средства для лечения расстройств восприятия
Автор(ы):, , , , ,
Патентообладатель(и):Федеральное Государственное Учреждение Межотраслевой научно-технический комплекс "Микрохирургия глаза" им. академика С.Н. Федорова Федерального агентства по здравоохранению и социальному развитию (RU)
Приоритеты:
подача заявки:
2006-01-31
публикация патента:

Изобретение относится к медицине, к офтальмологии, и может быть использовано для фотодинамической терапии и электрохимической деструкции меланомы хориоидеи. Для этого внутривенно вводят фотосенсибилизатор (ФС) в водорастворимой лекарственной форме в дозе 1,5-2,0 мг/кг × 0,7 в течение 40-60 минут. Одновременно проводят лазерное облучение крови в дозе облучения 600-900 Дж/см 3. При этом длина волны соответствует максимуму поглощения ФС в водорастворимой форме. Через 3-3,5 часа вводят ФС хлоринового ряда в липосомной форме в дозе 1,5-2,0 мг/кг × 0,3. Через 15 минут транспупиллярно воздействуют лазерным излучением по всему периметру опухоли с перекрытием соседних полей на 5% площади при плотности энергии 80-100 Дж/см2. При этом длина волны соответствует максимуму поглощения ФС в липосомной форме. Затем транспупиллярно облучают всю поверхность новообразования полями лазерного излучения по кругу от периферии к центру с перекрытием соседних полей на 5% площади. Длина волны соответствует максимуму поглощения фотосенсибилизатором в водорастворимой форме. Плотность энергии 80-100 Дж/см2 на периферии постепенно увеличивают к центру до 100-120 Дж/см2. Через 2 недели транссклерально диафаноскопически уточняют локализацию и проводят электрохимическую деструкцию внутриглазного новообразования с силой тока 10-100 мА в течение 10-1 минут. Проведение такого лечения позволяет достигнуть полного или частичного регресса внутриглазного новообразования, сохранить глаз, снизив риск метастазирования. 3 з.п. ф-лы.

Формула изобретения

1. Способ фотодинамической терапии и электрохимической деструкции меланомы хориоидеи, включающий электрохимическую деструкцию внутриглазного новообразования, внутривенное введение фотосенсибилизатора (ФС) хлоринового ряда и транспупиллярное лазерное облучение новообразования, отличающийся тем, что в кубитальную вену одной руки вводят ФС в водорастворимой лекарственной форме в дозе из расчета 1,5-2,0 мг/кг × 0,7 фотосенсибилизатора в течение 40-60 мин, и одновременно с введением ФС в кубитальную вену другой руки проводят внутривенное лазерное облучение крови с длиной волны, соответствующей максимуму поглощения фотосенсибилизатором в водорастворимой форме светового излучения, в дозе облучения 600-900 Дж/см3 , через 3-3,5 ч после начала введения ФС внутривенно болюсно вводят ФС хлоринового ряда в липосомной форме в дозе из расчета 1,5-2,0 мг/кг × 0,3 фотосенсибилизатора, причем в водорастворимой и липосомной форме вводят один и тот же препарат, и через 15 мин после окончания введения транспупиллярно облучают вокруг новообразования и край опухоли по всему ее периметру полями лазерного излучения с длиной волны, соответствующей максимуму поглощения фотосенсибилизатором в липосомной форме светового излучения, при плотности энергии 80-100 Дж/см2 с перекрытием соседних полей на 5% площади, затем транспупиллярно облучают всю поверхность новообразования полями лазерного излучения с длиной волны, соответствующей максимуму поглощения фотосенсибилизатором в водорастворимой форме светового излучения, причем облучение проводят по кругу от периферии к центру при плотности энергии 80-100 Дж/см2 при облучении на периферии с постепенным увеличением плотности энергии до 100-120 Дж/см 2 при облучении в центре, с перекрытием соседних полей на 5% площади, через 2 недели транссклерально диафаноскопически уточняют локализацию и размеры внутриглазного новообразования, вводят в структуру внутриглазного новообразования несколько электродов и, изменяя их полярность, проводят электрохимическую деструкцию внутриглазного новообразования с силой тока 10-100 мА в течение 10-1 мин соответственно, электроды удаляют.

2. Способ по п.1, отличающийся тем, что диаметр поля лазерного излучения составляет 3,5-4 мм.

3. Способ по п.2, отличающийся тем, что электроды вводят в структуру внутриглазного новообразования транссклерально.

4. Способ по п.3, отличающийся тем, что количество электродов составляет от 2 до 4.

Описание изобретения к патенту

Изобретение относится к медицине, а точнее к офтальмологии, и может быть использовано для лечения внутриглазных новообразований большого размера (по классификации J.Sields, 1983).

В последние годы принципы лечения внутриглазных новообразований существенно изменились. На смену радикальному хирургическому лечению или неоправданной выжидательной тактике пришли органосохранные методики, основная цель которых - полное разрушение опухоли при сохранении глаза как органа. Обязательным условием при проведении таких методик является локальное воздействие на внутриглазное новообразование с сохранением здоровых окружающих тканей. Ведущее место в этом направлении занимает фотодинамическая терапия (ФДТ). Однако при лечении внутриглазных новообразований большого размера ФДТ оказывается недостаточно эффективной в связи с ограниченным проникновением лазерного излучения в опухолевую ткань. В таких случаях наблюдается продолжение роста опухоли, возникает необходимость многократного проведения повторных сеансов. Поэтому становится актуальной разработка комплексных методов лечения, включающих сочетание фотодинамической терапии с другими методиками, направленными на разрушение опухолевой ткани.

Известен способ электрохимической деструкции и фотодинамического лечения внутриглазных новообразований (патент РФ №2243755), включающий электрохимическую деструкцию новообразования, внутривенное введение фотосенсибилизатора (ФС) и транспупиллярное лазерное облучение новообразования. Недостатком данного способа является затрудненное накопление ФС в сосудах опухоли из-за их частичного разрушения в процессе электрохимической деструкции, что осложняет проведение комбинированной методики.

Задачей изобретения является создание эффективного способа фотодинамической терапии и электрохимической деструкции внутриглазных новообразований.

Техническим результатом является полный или частичный регресс внутриглазного новообразования, сохранение глаза как органа, снижение риска метастазирования. Технический результат достигается за счет того, что:

1. Применяемые фотосенсибилизаторы (ФС) хлоринового ряда отличаются высокой степенью чистоты, низкой токсичностью, обладают тропностью к клеткам с высокой митотической активностью, способны накапливаться в опухолевых клетках, и даже в малых дозах проявляют высокую фотохимическую активность при лазерном облучении.

2. Вводят ФС хлоринового ряда в водорастворимой форме. Данная форма обладает более высокой тропностью к опухолевым клеткам.

3. Внутривенное лазерное облучение крови с одновременным внутривенным введением ФС в течение 40-60 минут (системная ФДТ) приводит к тому, что в опухолевые клетки поступают вновь образованные радикальные структуры, запускающие механизм апоптоза, кроме того, происходит активация иммунитета, предотвращается гематогенный путь метастазирования.

4. Проведение спектрально-флюоресцентной диагностики (СФД) позволяет определить, произошло ли достаточное и необходимое для проведения индуцированной фотохимической реакции накопление фотосенсибилизатора в опухолевой ткани по сравнению с окружающей.

5. Вводят ФС хлоринового ряда в липосомной форме. Использование липосомной лекарственной формы обеспечивает высокий контраст накопления фотосенсибилизатора в питающих опухоль хориоидальных и ретинальных сосудах благодаря механизму пассивного нацеливания липосом.

6. Последовательность введения водорастворимой и липосомной форм ФС и интервалы времени между введением ФС и СФД и введением ФС и лазерным облучением являются необходимыми и достаточными для накопления ФС в опухолевых клетках и сосудах, питающих опухоль, соответственно.

7. Следующее после введения ФС транспупиллярное облучение вокруг новообразования и края опухоли по всему ее периметру лазерным излучением с заданными параметрами вызывает стаз крови и светоиндуцированный тромбоз сосудов, питающих новообразование, исключает диссеминацию и миграцию опухолевых клеток.

8. Облучение в ходе ФДТ полями лазерного излучения с перекрытием соседних полей на 5% площади обеспечивает равномерность облучения.

9. Последующее транспупиллярное облучение (ФДТ) всей поверхности новообразования по кругу от периферии к центру лазерным излучением с заданными параметрами вызывает гибель опухолевых клеток на глубину до 4,6-4,8 мм, а также исключает диссеминацию и миграцию опухолевых клеток. Доказательством эффективности ФДТ на глубину до 4,6-4,8 мм при лечении внутриглазных новообразований служат следующие данные. Тридцати двум новозеландским кроликам с пигментными меланомами хориоидеи провели ФДТ (Kim RY; Ни LK; Foster BS; Gragoudas ES; Young LH. Photodynamic therapy of pigmented choroidal melanomas of greater than 3-mm thickness // Ophthalmology. 1996 Dec; 103(12): 2029-36): внутривенно вводили ФС в дозе 1 мг/кг, после чего транспупиллярно облучали внутриглазное новообразование. Доза лазерного излучения варьировалась от 60 до 120 Дж/см 2. Результаты гистоморфологических исследований подтвердили способность ФДТ разрушать меланомы хориоидеи толщиной 4,6 мм. В более раннем подобном исследовании (Gonzales VH, Hu LK, Theodossiadis PG, et al. Photodynamic therapy of pigmented choroidal melanoma // Ophthalmol Vis Sci. 1995; 36: 871-878) была показана эффективность ФДТ в отношении пигментных меланом хориоидеи толщиной 4,8 мм.

10. Проведение электрохимической деструкции через 2 недели после ФДТ позволяет достичь разрушения опухолевой ткани в глубоких слоях опухоли, оставшихся интактными после ФДТ.

Заявленный технический результат может быть получен только при использовании всей совокупности приемов предложенного нами способа.

Способ осуществляется следующим образом. Предварительно с помощью методов ультразвуковой диагностики определяют локализацию и размеры (толщину, радиальный и меридианный диаметры) внутриглазного новообразования. В кубитальную вену одной руки вводят ФС хлоринового ряда в водорастворимой лекарственной форме, например фотолон, радахлорин, фотодитазин, в дозе из расчета (1,5-2,0 мг/кг × 0,7) в течение 40-60 минут, и одновременно с введением ФС в кубитальную вену другой руки проводят внутривенное лазерное облучение крови (ВЛОК) с длиной волны, соответствующей максимуму поглощения фотосенсибилизатором в водорастворимой форме светового излучения, например, 662 нм для ФС хлоринового ряда, в дозе облучения 600-900 Дж/см 3, через 3-3,5 часа после начала введения ФС проводят спектрально-флюоресцентную диагностику (СФД) накопления ФС во внутриглазном новообразовании, и внутривенно болюсно вводят ФС хлоринового ряда в липосомной форме, это может быть, например, тринатриевая соль хлорина Е6 (фотолон), или фотосенсибилизатор, включающий щелочную соль 13-карбокси-17-[2-карбоксиэтил]-15-карбоксиметил-17,18-транс-дигидро-3-винил-8-этил-2,7,12,18-тетраметилпорфирина (хлорина е6) в количестве 80-90%, щелочную соль 13-карбокси-17-[2-карбоксиэтил]-15-формил-17,18-транс-дигидро-3-винил-8-этил-2,7,12,18-тетраметилпорфирина (пурпурина 5) в количестве 5-20%, а также щелочную соль 13-карбокси-17-[2-карбоксиэтил]-15-карбокси-17,18-транс-дигидро-3-винил-8-этил-2,7,12,18-тетраметилпорфирина (хлорина р6) в количестве - остальное (радахлорин), или бис-N-метилглюкамоновая соль хлорина е6 (фотодитазин), в дозе из расчета (1,5-2,0 мг/кг × 0,3) и через 15 минут после окончания введения транспупиллярно облучают вокруг новообразования и край опухоли по всему ее периметру полями лазерного излучения диаметром 3,5-4 мм с длиной волны, соответствующей максимуму поглощения фотосенсибилизатором в липосомной форме светового излучения, например 670 нм для ФС хлоринового ряда, при плотности энергии 80-100 Дж/см2 с перекрытием соседних полей на 5% площади. Затем транспупиллярно облучают всю поверхность новообразования полями лазерного излучения с длиной волны, соответствующей максимуму поглощения фотосенсибилизатором в водорастворимой форме светового излучения, например 662 нм для ФС хлоринового ряда, причем облучение проводят по кругу от периферии к центру при плотности энергии 80-100 Дж/см 2 при облучении на периферии с постепенным увеличением плотности энергии до 100-120 Дж/см2 при облучении в центре с перекрытием соседних полей на 5% площади.

Пациенту в водорастворимой и липосомной форме вводится один и тот же фотосенсибилизатор, причем 70% общей дозы ФС вводится в водорастворимой форме, а 30% - в липосомной.

Все действия с фотосенсибилизатором осуществляются в условиях затемнения, обеспечивающих невозможность проникновения в помещение прямых солнечных лучей. Данное условие является общеизвестным и стандартным для проведения сеансов ФДТ.

Липосомную форму ФС хлоринового ряда получают, например, следующим образом. В круглодонной колбе смешивают 50 мг яичного фосфатидилхолина (яФХ) и 7.5 мг холестерина (Хол), добавляют 5 мл хлороформа, продувают аргоном или другим инертным газом, упаривают до постоянной массы на роторном испарителе. Затем сушат в течение 10 ч в вакууме масляного насоса. Взвешивают. Добавляют раствор ФС (5 мг/мл) к пленке липидов в колбе, встряхивают, чтобы все липиды диспергировались (при необходимости озвучивают на УЗ-бане) замораживают в жидком азоте, оттаивают при 40-60°С. Продавливают последовательно через фильтры с порами 400 нм, 200 нм, 100 нм по 19 раз. Наносят на колонку с Сефарозой CL-4B, выделяют 2 фракции: фракцию свободного объема, содержащую липосомы с включившимся ФС, и фракцию не включившегося ФС. При необходимости фракцию липосомного ФС концентрируют (например, ультрафильтрацией).

Через 2 недели транссклерально диафаноскопически уточняют локализацию и размеры внутриглазного новообразования. Затем на 2/3 толщины склеры над внутриглазным новообразованием формируют склеральный карман прямоугольной формы основанием от лимба, через сформированное ложе вводят в структуру внутриглазного новообразования несколько электродов, например от 2 до 4, выполненных из платины, и, изменяя их полярность, проводят электрохимическую деструкцию внутриглазного новообразования с силой тока 10-100 мА в течение 10-1 минут, соответственно. Электроды удаляют, поверхностный склеральный лоскут возвращают на место и фиксируют узловыми швами.

Изобретение поясняется следующими примерами.

Пример 1. Пациент X., 79 лет. При обследовании в КФ ФГУ МНТК "Микрохирургия глаза" была диагносцирована меланома хориоидеи (MX) правого глаза (OD).

Офтальмоскопически в нижненаружном квадранте на средней периферии глазного дна правого глаза определялся обширный, резко проминирующий в стекловидное тело очаг серо-желтого цвета, с нечеткими границами. По данным ультразвукового В-сканирования размеры новообразования составляли: диаметр у основания - 12 на 14 мм; толщина на вершине опухоли - 6,5 мм.

Пациент пролечен по предложенному способу.

В кубитальную вену одной руки вводили фотолон в дозе из расчета 1,5 мг/кг × 0,7 в течение 40 минут, и одновременно с введением ФС в кубитальную вену другой руки проводили внутривенное лазерное облучение крови с длиной волны 662 нм в дозе облучения 900 Дж/см 3. Через 3 часа после начала введения ФС провели СФД и внутривенно болюсно ввели тот же ФС в липосомной форме в дозе из расчета 1,5 мг/кг × 0,3. Через 15 минут после окончания введения транспупиллярно облучили вокруг новообразования и край опухоли по всему ее периметру полями лазерного излучения диаметром 3,5 мм с длиной волны 670 нм при плотности энергии 80 Дж/см 2 с перекрытием соседних полей на 5% площади. Затем транспупиллярно облучили всю поверхность новообразования полями лазерного излучения с длиной волны 662 нм, причем облучение проводили по кругу от периферии к центру при плотности энергии 80 Дж/см 2 при облучении на периферии с постепенным увеличением плотности энергии до 100 Дж/см2 при облучении в центре с перекрытием соседних полей на 5% площади.

Через 2 недели транссклерально диафаноскопически уточнили локализацию и размеры внутриглазного новообразования. Затем на 2/3 толщины склеры над внутриглазным новообразованием сформировали склеральный карман прямоугольной формы основанием от лимба, через сформированное ложе ввели в структуру внутриглазного новообразования 2 электрода из платины. Провели электрохимическую деструкцию внутриглазного новообразования с силой тока 10 мА в течение 10 минут, изменяя полярность электродов. Электроды удалили, поверхностный склеральный лоскут возвратили на место и зафиксировали узловыми швами.

При динамическом наблюдении в сроки 3, 6 и 12 месяцев после проведенного лечения, офтальмоскопически и по данным ультразвукового В-сканирования отмечался постепенный регресс новообразования, через 1,5 года на месте новообразования определялся обширный плоский атрофический хориоретинальный очаг с грубой пигментацией. Признаков рецидива MX и отдаленных метастазов в сроки до 1,5 лет выявлено не было. Глаз сохранен как орган.

Признаков рецидива новообразования и отдаленных метастазов в указанные сроки обнаружено не было. Глаз сохранен как орган.

Пример 2. Пациенка П., 74 лет. Диагноз при поступлении: меланома хориоидеи (MX) левого глаза (OS).

Локализация новообразования - парацентральная область с распространением к экватору в верхневисочную сторону; размеры новообразования, по данным ультразвукового В-сканирования: ширина основания - 12 мм, длина - 16 мм, величина проминенции - 8,0 мм у вершины опухоли.

Пациентка пролечена по предложенному способу.

В кубитальную вену одной руки вводили фотодитазин в дозе из расчета 2,0 мг/кг × 0,7 в течение 60 минут, и одновременно с введением ФС в кубитальную вену другой руки проводили внутривенное лазерное облучение крови с длиной волны 662 нм в дозе облучения 600 Дж/см3. Через 3,5 часа после начала введения ФС провели СФД и внутривенно болюсно ввели тот же ФС в липосомной форме в дозе из расчета 2,0 мг/кг × 0,3. Через 15 минут после окончания введения транспупиллярно облучили вокруг новообразования и край опухоли по всему ее периметру полями лазерного излучения диаметром 4 мм с длиной волны 670 нм при плотности энергии 100 Дж/см2 с перекрытием соседних полей на 5% площади. Затем транспупиллярно облучили всю поверхность новообразования полями лазерного излучения с длиной волны 662 нм, причем облучение проводили по кругу от периферии к центру при плотности энергии 100 Дж/см2 при облучении на периферии с постепенным увеличением плотности энергии до 120 Дж/см2 при облучении в центре с перекрытием соседних полей на 5% площади.

Через 2 недели транссклерально диафаноскопически уточнили локализацию и размеры внутриглазного новообразования. Затем на 2/3 толщины склеры над внутриглазным новообразованием сформировали склеральный карман прямоугольной формы основанием от лимба, через сформированное ложе ввели в структуру внутриглазного новообразования 4 электрода из платины. Провели электрохимическую деструкцию внутриглазного новообразования с силой тока 100 мА в течение 1 минуты, изменяя полярность электродов. Электроды удалили, поверхностный склеральный лоскут возвратили на место и зафиксировали узловыми швами.

При контрольном ультразвуковом В-сканировании правого глаза в послеоперационном периоде наблюдался регресс новообразования, с уменьшением величины проминенции опухоли - до 4,0 мм к 3 месяцам, и до 2,5 мм - к 6 месяцам. В отдаленном периоде наблюдения (1,5 года) отмечалось дальнейшее уплощение образования с формированием хориоретинального рубца, соответственно месту расположения меланомы хориоидеи.

По предложенному способу пролечено 6 пациентов с меланомой хориоидеи. В качестве ФС использовали фотолон, радахлорин, фотодитазин в водорастворимой и липосомной формах. Электрохимическую деструкцию проводили с электродами из платины или иридия, или родия с силой тока 10, 30, 40, 60, 80, 100 мА в течение 10, 8, 7, 5, 3, 1 минуты, соответственно. Во всех случаях был достигнут заявленный технический результат.

Таким образом, заявляемый способ позволяет достичь полного или частичного регресса внутриглазного новообразования, сохранить глаз как органа, обеспечить отсутствие метастазирования.

Класс A61F9/00 Способы и устройства для лечения глаз; приспособления для вставки контактных линз; устройства для исправления косоглазия; приспособления для вождения слепых; защитные устройства для глаз, носимые на теле или в руке

способ фиксации мягкой интраокулярной линзы при отсутствии капсулярной поддержки -  патент 2529411 (27.09.2014)
устройство для разреза роговицы глаза человека -  патент 2529391 (27.09.2014)
устройство для разрезания роговой оболочки глаза -  патент 2528853 (20.09.2014)
способ хирургического замещения множественных, тотальных и обширных кожных дефектов век, распространяющихся на окружающие зоны лица -  патент 2528650 (20.09.2014)
роговичный сегмент для лечения кератэктазий различного генеза -  патент 2528649 (20.09.2014)
способ факоэмульсификации -  патент 2528633 (20.09.2014)
способ репозиции моноблочной интраокулярной линзы, дислоцированной вместе с капсульным мешком -  патент 2527912 (10.09.2014)
способ осуществления тоннельного разреза для факоэмульсификации -  патент 2527911 (10.09.2014)
способ микроинвазивной непроникающей глубокой склерэктомии при открытоугольной глаукоме -  патент 2527908 (10.09.2014)
способ имплантации интраокулярной линзы больным с эктопией хрусталика -  патент 2527844 (10.09.2014)

Класс A61F9/007 способы или устройства, применяемые в хирургии глаза

способ фиксации мягкой интраокулярной линзы при отсутствии капсулярной поддержки -  патент 2529411 (27.09.2014)
способ хирургического замещения множественных, тотальных и обширных кожных дефектов век, распространяющихся на окружающие зоны лица -  патент 2528650 (20.09.2014)
роговичный сегмент для лечения кератэктазий различного генеза -  патент 2528649 (20.09.2014)
способ факоэмульсификации -  патент 2528633 (20.09.2014)
способ репозиции моноблочной интраокулярной линзы, дислоцированной вместе с капсульным мешком -  патент 2527912 (10.09.2014)
способ микроинвазивной непроникающей глубокой склерэктомии при открытоугольной глаукоме -  патент 2527908 (10.09.2014)
способ имплантации интраокулярной линзы больным с эктопией хрусталика -  патент 2527844 (10.09.2014)
ирригационная сдавливающая лента под давлением -  патент 2527354 (27.08.2014)
кольцеобразное устройство -  патент 2527353 (27.08.2014)
устройство для капсулорексиса с гибким нагревательным элементом -  патент 2527149 (27.08.2014)

Класс A61F9/008 использующие лазеры

способ комбинированного лечения ретиноваскулярного макулярного отека -  патент 2527360 (27.08.2014)
способ пластики экстраокулярных мышц с усилением методом компрессии -  патент 2525624 (20.08.2014)
способ лазерного лечения диабетического макулярного отека -  патент 2525202 (10.08.2014)
устройство для обработки материала и способ эксплуатации такого устройства -  патент 2522965 (20.07.2014)
способ выбора параметров лазерного лечения терминальных форм глаукомы -  патент 2521844 (10.07.2014)
подвижный подвес с компенсацией веса для фокусирующего объектива лазерного устройства -  патент 2520920 (27.06.2014)
устройство для лазерной хирургической офтальмологии -  патент 2516121 (20.05.2014)
система для лазерной хирургической офтальмологии -  патент 2506938 (20.02.2014)
способ экстракции катаракты с помощью nd:yag лазера с длиной волны 1,44 мкм у пациентов с частичным повреждением цинновой связки и грыжей стекловидного тела -  патент 2502496 (27.12.2013)
способ лазерного лечения первичной открытоугольной глаукомы с узким углом передней камеры -  патент 2499582 (27.11.2013)

Класс A61N1/18 воздействие электрическим током, подводимым через контактные электроды 

система неинвазивной нейростимуляции -  патент 2522850 (20.07.2014)
система и способ передачи информации между имплантируемыми устройствами -  патент 2511071 (10.04.2014)
экстрасклеральный электрод для электрохимического лизиса внутриглазных новообразований -  патент 2508083 (27.02.2014)
способ лечения острых пневмоний у ослабленных больных в условиях промышленного города -  патент 2501582 (20.12.2013)
устройство обнаружения и предупреждения эпилептиформной активности -  патент 2498769 (20.11.2013)
способ выбора тактики лечения шизофрении, резистентной к психофармакотерапии -  патент 2495685 (20.10.2013)
устройство для коррекции функционального состояния организма человека -  патент 2495684 (20.10.2013)
внутриносовая шина с интегрированным электродом -  патент 2493790 (27.09.2013)
способ лечения остеоартроза височно-нижнечелюстного сустава -  патент 2486927 (10.07.2013)
электрод для электрохимического лизиса внутриглазных новообразований -  патент 2485924 (27.06.2013)

Класс A61N5/067 с использованием лазерного луча

лазерное терапевтическое устройство -  патент 2528659 (20.09.2014)
волоконно-оптический инструмент с изогнутой дистальной рабочей частью -  патент 2528655 (20.09.2014)
способ лечения туберкулезного спастического микроцистиса -  патент 2527905 (10.09.2014)
устройство для воздействия инфракрасным излучением на коллагеновый слой кожи человека с визуализацией процесса -  патент 2527318 (27.08.2014)
способ лечения инфицированных ран и свищей у онкологических больных -  патент 2527175 (27.08.2014)
способ лечения пациентов с заболеваниями пульпы зуба и периодонта -  патент 2526961 (27.08.2014)
способ лечения деструктивных форм хронических верхушечных периодонтитов -  патент 2525702 (20.08.2014)
способ комплексной терапии впервые выявленного туберкулеза легких -  патент 2525580 (20.08.2014)
способ восстановления функций кишечной трубки при синдроме короткой кишки -  патент 2525530 (20.08.2014)
способ лечения кожных заболеваний и лазерное терапевтическое устройство для его осуществления -  патент 2525277 (10.08.2014)

Класс A61K31/409  содержащие четыре таких кольца, например производные порфина, билирубин, биливердин

фотосенсибилизатор и способ его получения -  патент 2523380 (20.07.2014)
способ фотодинамической терапии больных с опухолевыми метастатическими плевритами -  патент 2514107 (27.04.2014)
способ получения хлоринов и их фармацевтические применения -  патент 2513483 (20.04.2014)
способ антимикробной фотодинамической терапии острых воспалительных заболеваний гортаноглотки или их гнойных осложнений -  патент 2511545 (10.04.2014)
способ повышения резистентности организма млекопитающих при радиационном поражении -  патент 2508100 (27.02.2014)
способ лечения поражений, ассоциированных с воздействием алкилирующих веществ -  патент 2506083 (10.02.2014)
способ комплексного лечения острых эпидидимоорхитов, вызванных грамположительной и грамотрицательной микрофлорой -  патент 2495692 (20.10.2013)
способ лечения дистрофических заболеваний вульвы -  патент 2482893 (27.05.2013)
фотосенсибилизатор для фотодинамической терапии -  патент 2479585 (20.04.2013)
карборанилпорферины и их применение -  патент 2477161 (10.03.2013)

Класс A61P35/00 Противоопухолевые средства

способ лечения рака толстой кишки -  патент 2529831 (27.09.2014)
способ оценки эффекта электромагнитных волн миллиметрового диапазона (квч) в эксперименте -  патент 2529694 (27.09.2014)
новые (поли)аминоалкиламиноалкиламидные, алкил-мочевинные или алкил-сульфонамидные производные эпиподофиллотоксина, способ их получения и их применение в терапии в качестве противораковых средств -  патент 2529676 (27.09.2014)
производные 1, 2-дигидроциклобутендиона в качестве ингибиторов фосфорибозилтрансферазы никотинамида -  патент 2529468 (27.09.2014)
фармацевтическое средство, содержащее эпитопные пептиды hig2 и urlc10, для лечения рака, способы и средства для индукции антигенпрезентирующей клетки и цитотоксического т-лимфоцита (цтл), антигенпрезентирующая клетка и цтл, полученные таким способом, способ и средство индукции иммунного противоопухолевого ответа -  патент 2529373 (27.09.2014)
модульный молекулярный конъюгат для направленной доставки генетических конструкций и способ его получения -  патент 2529034 (27.09.2014)
модулирующие jak киназу хиназолиновые производные и способы их применения -  патент 2529019 (27.09.2014)
лечение опухолей с помощью антитела к vegf -  патент 2528884 (20.09.2014)
способ лечения местнораспространенного неоперабельного рака поджелудочной железы -  патент 2528881 (20.09.2014)
новые бензолсульфонамидные соединения, способ их получения и применение в терапии и косметике -  патент 2528826 (20.09.2014)

Класс A61P27/00 Лекарственные средства для лечения расстройств восприятия

офтальмологический ирригационный раствор -  патент 2529787 (27.09.2014)
глазные капли на основе композиции фармацевтически приемлемой аддитивной соли кислоты и метилэтилпиридинола, содержащие композицию витаминов группы в -  патент 2528912 (20.09.2014)
6-замещенные изохинолины и изохинолиноны полезные в качестве ингибиторов rho-киназы -  патент 2528229 (10.09.2014)
способ комбинированного лечения ретиноваскулярного макулярного отека -  патент 2527360 (27.08.2014)
фармацевтическая антиангиогенная композиция для лечения заболеваний глаз -  патент 2526825 (27.08.2014)
способ медикаментозного расширения ригидного зрачка перед проведением факоэмульсификации -  патент 2525512 (20.08.2014)
способ лечения монокулярного оптического неврита при рассеянном склерозе -  патент 2523146 (20.07.2014)
профилактика и лечение патологических состояний глаз, вызванных комплементом -  патент 2522976 (20.07.2014)
производные пиридина в качестве ингибиторов рецепторов фактора роста эндотелия сосудов 2 подтипа (vegfr-2) и протеинтирозинкиназы -  патент 2522444 (10.07.2014)
способ лечения кератоконуса у пациентов с тонкой роговицей -  патент 2522386 (10.07.2014)
Наверх