способ получения n-фенилзамещенных ароматических полиамидов

Классы МПК:C08G69/32 из ароматических диаминов и ароматических дикарбоновых кислот с ароматически связанными аминогруппами и карбоксильными группами
C08G69/00 Высокомолекулярные соединения, получаемые реакциями образования карбоксамидной связи в основной цепи макромолекулы
Автор(ы):, , ,
Патентообладатель(и):Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) (RU)
Приоритеты:
подача заявки:
2006-03-30
публикация патента:

Описан способ получения ароматических N-фенилзамещенных полиамидов, состоящий из предварительного получения полиимидатов реакцией поликонденсацией бис-фенолов с имидоилхлоридами на основе моно- и дикарбоновых кислот с их последующей перегруппировкой Чепмена в N-фенилзамещенные ароматические полиамиды, причем перегруппировку Чепмена проводят в растворе дифенилового эфира при температуре 240°С в течение 3-4 часов. Изобретение позволяет повысить молекулярную массу полимеров и улучшить их физико-химические характеристики. 4 табл.

Формула изобретения

Способ получения ароматических N-фенилзамещенных полиамидов, состоящий из предварительного получения полиимидатов реакцией поликонденсацией бис-фенолов с имидоилхлоридами на основе моно- и дикарбоновых кислот с их последующей перегруппировкой Чепмена в N-фенилзамещенные ароматические полиамиды, отличающийся тем, что перегруппировку Чепмена проводят в растворе дифенилового эфира при температуре 240°С в течение 3-4 ч.

Описание изобретения к патенту

Изобретение относится к химии высокомолекулярных соединений, в частности к способу получения термостойких полигетероариленов, которые могут быть использованы в промышленности полимерных изделий как связующие для пластмасс и стеклопластиков, а также клеев, покрытий и пленочных материалов.

Известны (Imai Y., Kakimoto M-A. J. Polymer Sci. - 1984. - Vol.22. - р.1291-1297, Oishi Y., Imai Y., Kakimoto M-A. J. Polymer Sci. - 1987. - Vol.25. - p.2493-2502) классические в химии полимеров способы получения N-фенилзамещенных ароматических полиамидов (N-ФАПА), заключающиеся в высокотемпературной поликонденсации N,N'-дифениламинов с галогенангидридами ароматических дикарбоновых кислот. В силу низкой реакционной способности используемых диаминов реакции проходят при высоких температурах (160-200°С) и значительной продолжительности (7-18 часов) с получением сравнительно низковязких полимеров (способ получения n-фенилзамещенных ароматических полиамидов, патент № 2305115 прив. 0,20-0,54 дл/г), данные методы не позволяют получать широкий спектр N-ФАПА. Полученные полимеры обладают недостаточной термостойкостью и небольшим интервалом между температурами размягчения и разложения и, как следствие, обладают плохой способностью к перерабатотке.

Наиболее близким по технической сущности и достигаемому эффекту является способ получения N-ФАПА (Пат. РФ №2245345, кл. С08G 69/32, опубл. 27.01.2005 г.), принятый за прототип, основанный также на предварительном получении полиимидатов, но перегруппировка осуществляется термообработкой при 240-260°С, в течение 5-6 часов, при этом степень трансформации составляет 74,5-88,7%.

Техническим результатом изобретения является увеличение глубины превращения и молекулярной массы полимеров; сокращение времени и температуры реакции; повышение термостойкости, улучшение физико-механических характеристик и обеспечение возможности переработки N-ФАПА в изделия современными промышленными методами.

Для достижения технического результата предложено получение N-ФАПА по реакции термической перегруппировки полиимидатов в растворе дифенилового эфира при температуре 230-250°С и продолжительности 3-4 часа по механизму перегруппировки Чепмена [Вацуро К.В., Мищенко Г.Л. Именные реакции в органической химии. - М.: Химия, - 1976. - 522 с.].

Полиимидаты предварительно получают неравновесной поликонденсацией бис-фенолов с небольшим избытком N-фенилиминохлорида на основе моно- и дикарбоновых кислот (мольное соотношение 1,000:1,080-1,120, соответственно) по следующей схеме 1:

способ получения n-фенилзамещенных ароматических полиамидов, патент № 2305115

Перегруппировку ПИД в АПА осуществляли по схеме 2:

способ получения n-фенилзамещенных ароматических полиамидов, патент № 2305115

Коэффициенты m и n - количество молей мономеров, вступивших в реакцию, p и d - степень полимеризации, лежащая в области 43-50 и 38-46, соответственно.

Реакцию неравновесной поликонденсации в растворе N-метил-2-пирролидона (N-МП) бис-фенола с N-фенилиминохлоридом проводят следующим образом: в раствор (N-МП) бис-фенола и триэтиламина при 20°С небольшими порциями в течение 15-20 мин вводят раствор (N-МП) N-фенилиминохлорида. После гомогенизации реакционную смесь помещают в металлическую баню с одновременной подачей аргона (скорость 10-30 мл/мин). Поликонденсацию ведут в течение 15-16 часов при 150-160°С, в зависимости от строения исходных мономеров с образованием полиимидатов, выход 94-97%.

Перегруппировку осуществляли при 230-250°С в течение 3-4 часов в растворе дифенилового эфира, при этом не происходило изменение молекулярной массы образующегося N-ФАПА. Полимеры полностью растворимы в концентрированных серной и муравьиной кислоте, амидных растворителях. Условия проведения реакций и свойства полученных N-ФАПА приведены в таблице 1 и 2.

способ получения n-фенилзамещенных ароматических полиамидов, патент № 2305115 способ получения n-фенилзамещенных ароматических полиамидов, патент № 2305115 способ получения n-фенилзамещенных ароматических полиамидов, патент № 2305115 способ получения n-фенилзамещенных ароматических полиамидов, патент № 2305115 способ получения n-фенилзамещенных ароматических полиамидов, патент № 2305115 способ получения n-фенилзамещенных ароматических полиамидов, патент № 2305115

Строение N-ФАПА подтверждено данными ИК-спектроскопией, ЯМР С13- и Н1-спектроскопией. Так, по данным ИК-спектроскопии характеристические полосы поглощения с области 1665-1635 см-1 (C=N) смещаются в область 1690-1660 см-1 (С=O), а полосы в области 1280-1260 см-1 имидоэфирной (С-O) связи, практически отсутствуют. Наиболее доказательными являются данные ЯМР 13С (ДМСО-d6 , способ получения n-фенилзамещенных ароматических полиамидов, патент № 2305115 , м.д.): сигнал при 165,799, свидетельствующий о наличии карбонильного атома углерода.

Пленочные материалы получали поливом 18-20% раствора полимера в диметилформамиде на стеклянную подложку. Физико-механические свойства пленок представлены в таблице 3.

способ получения n-фенилзамещенных ароматических полиамидов, патент № 2305115

Прессованием порошков ароматических полиамидов при давлении 70-75 МПа и 250-350°С получены пресс-материалы, свойства которых приведены в Таблице 4.

способ получения n-фенилзамещенных ароматических полиамидов, патент № 2305115

Предлагаемый способ подтверждается следующими примерами.

Пример 1. К раствору (N-МП) бис-фенола (0,0100 моль) в трехгорлой колбе, снабженной мешалкой, вводом для аргона и капельной воронкой, при интенсивном перемешивании в присутствии триэтиламина (0,022 моль) в течение 15-20 мин приливали раствор (N-МП) N-фенилиминохлорида на основе дикарбоновых кислоты (0,011 моль) при 20°С. Гомогенизированную реакционную смесь погружали в баню с одновременной подачей аргона 10-30 мл/мин. Синтез вели в течение 15-16 часов при 150-160°С. Продукт высаживали в 2% водный раствор аммиака, отделяли на фильтре, промывали последовательно 1% раствором бисульфита натрия и водой. Сушили в вакуум-шкафу при 60-70°С до постоянной массы.

Перегруппировку осуществляли в колбе, снабженной вводом/выводом для аргона (скорость продувания 10-30 мл/мин) в среде дифенилового эфира 10 г (0,0685 моль) при 230°С в течение 4 часов. Загрузка полимера 0,0021 моль, выход N-ФАПА количественный.

Пример 2. К раствору (N-МП) резорцина 1,100 г (0,0100 моль) в трехгорлой колбе, снабженной мешалкой, вводом для аргона и капельной воронкой, при интенсивном перемешивании в присутствии триэтиламина 2,2220 г (0,0220 моль) в течение 15-20 мин приливали раствор (N-МП) N,N'-дифенилизофталиминохлорида 3,8830 г (0,0110 моль) при 20°С. Гомогенизированную реакционную смесь погружали в баню с одновременной подачей аргона 10-30 мл/мин. Синтез вели в течение 15-16 часов при 150-160°С. Продукт высаживали в 2% водный раствор аммиака, отделяли на фильтре, промывали последовательно 1% раствором бисульфита натрия и водой. Сушили в вакуум-шкафу при 60-70°С до постоянной массы.

Перегруппировку осуществляли в колбе, снабженной вводом/выводом для аргона (скорость продувания 10-30 мл/мин) в среде дифенилового эфира 10 г (0,0685 моль) при 240°С в течение 3,5 часов. Загрузка полимера 0,0021 моль, выход N-ФАПА количественный.

Пример 3. К раствору (N-МП) гидрохинона 1,100 г (0,0100 моль) в трехгорлой колбе, снабженной мешалкой, вводом для аргона и капельной воронкой, при интенсивном перемешивании в присутствии триэтиламина 2,1816 г (0,0216 моль) в течение 15-20 мин приливали раствор (N-МП) 4,4'-окса-бис-(N-фениленбензиминохлорида) 4,8060 г (0,0108 моль) при 20°С. Гомогенизированную реакционную смесь погружали в баню с одновременной подачей аргона 10-30 мл/мин. Синтез вели в течение 15-16 часов при 150-160°С. Продукт высаживали в 2% водный раствор аммиака, отделяли на фильтре, промывали последовательно 1% раствором бисульфита натрия и водой. Сушили в вакуум-шкафу при 60-70°С до постоянной массы.

Перегруппировку осуществляли аналогично примеру 1. Выход N-ФАПА количественный.

Пример 4. Неравновесную полигетероконденсацию между бис-фенолами и N-фенилиминохлоридами на основе монокарбоновых кислот, а именно поликонденсацию гидрохинона 1,100 г (0,0100 моль) в присутствии триэтиламина 2,1816 г (0,0216 моль) с 4,4'-метилен-бис-(N-фениленбензиминохлоридом) 4,8730 г (0,0110 моль) и последующую перегруппировку осуществляли аналогично примеру 3. Выход N-ФАПА количественный.

Степень перегруппировки полиимидатов в N-ФАПА составляла 86,6-98,3%.

Как видно из приведенных данных Таблиц 1-4, предлагаемый способ получения N-ФАПА выгодно отличается тем, что получаются полимеры с высокими значениями молекулярной массы, сравнительно хорошей растворимостью и хорошей перерабатываемостью в полимерные материалы современными методами, а также высокими значениями физико-механических свойств их материалов и высокой стойкостью к термоокислительной деструкции.

Вышеперечисленный комплекс практически полезных свойств полученных ароматических ПА определяет положительный эффект изобретения. Полученные ароматические ПА могут быть использованы в различных областях техники в качестве высокопрочных и высокотермостойких покрытий, связующих для пластмасс, стеклопластиков, пленок и клеев.

Класс C08G69/32 из ароматических диаминов и ароматических дикарбоновых кислот с ароматически связанными аминогруппами и карбоксильными группами

способ получения ароматических полиамидинов -  патент 2510633 (10.04.2014)
сшитый арамидный полимер -  патент 2497840 (10.11.2013)
многотоннажный процесс полимеризации полиарамида, содержащего 5(6)-амино-2-(п-аминофенил)бензимидазол (dapbi) -  патент 2488604 (27.07.2013)
комплексная высокопрочная высокомодульная термостойкая нить из гетероциклического ароматического сополиамида и способ ее получения (варианты) -  патент 2487969 (20.07.2013)
способ получения нанокомпозитного материала для термо- и хемостойких покрытий и планарных слоев с высокой диэлектрической проницаемостью -  патент 2478663 (10.04.2013)
способ получения ароматических сополиамидов (варианты) и высокопрочные высокомодульные нити на их основе -  патент 2469052 (10.12.2012)
ароматическое полиамидное волокно на основе гетероциклсодержащего ароматического полиамида, способ его изготовления, ткань, образованная волокном, и армированный волокном композитный материал -  патент 2452799 (10.06.2012)
сшиваемые арамидные сополимеры -  патент 2446194 (27.03.2012)
волокно из ароматического полиамида, способ его изготовления и материал для защитной одежды -  патент 2411313 (10.02.2011)
способ получения термостойкого материала для защитного покрытия -  патент 2373246 (20.11.2009)

Класс C08G69/00 Высокомолекулярные соединения, получаемые реакциями образования карбоксамидной связи в основной цепи макромолекулы

Наверх